SEQR Draft Generic Environmental Impact Statement (Draft GEIS)

Action: Route 96 Transformative Corridor Strategic Infrastructure Plan Adoption & Implementation

Location: Town of Victor, Ontario County, NY

Lead Agency: Town of Victor Town Board
Jack Marren, Town Supervisor
85 East Main Street
Victor, NY 14564

Date of Acceptance by Lead Agency: August 13, 2018

Agency Contact for Further Information: Kimberly A. Kinsella, Town of Victor
85 East Main Street
Victor, NY 14564
585 742 5040
kakinsella@town-victor-ny.us

Updated Date by Which Comments Must Be Submitted to Lead Agency: November 9, 2018

Previous Date by Which Comments Were to be Submitted: September 20, 2018

Previous Public Hearing Held Date, Time & Place: September 10, 2018 7:30 PM EDT
Town of Victor Town Hall
85 East Main Street
Victor, NY 14564

Organizations Preparing Part of the Statement:
LaBella Associates, DPC
300 State Street, Suite 201
Rochester, NY 14614
585 454 6110

CPL
205 St. Paul Street
Rochester, NY 14604
585 454 4570

T.Y. Lin International
225 East Avenue
Rochester, NY 14604
585 512 200
Table of Contents

List of Tables Included in the Text.. vi
List of Figures Included in the Text .. vii
List of Figures Appended to the Text ... viii
List of Appendices .. ix
List of Abbreviations and Acronyms .. x

Introductory Summary ... 1
 The Proposed Action ... 1
 Procedural History ... 1
 Scope of the Proposed Action ... 3
 Involved Agencies ... 4
 Reliance on a Generic Environmental Impact Statement ... 6

The Proposed Action, Purpose, Public Need and Benefits ... 9
 The Proposed Action ... 9
 Purpose of the Proposed Action .. 13
 Public Need for the Proposed Action .. 13
 Benefits of the Proposed Action ... 16
 Traffic and Transportation Benefits Specific to Separate Components of the Proposed Action 16
 Traffic and Transportation Benefits of All Components of the Proposed Action Combined 17
 Social and Economic Considerations Relative to Benefits of the Proposed Action 23

Environmental Setting of Areas to Be Affected .. 23
 Affected Regional and Corridor-wide Settings .. 23
 Affected Settings Specific to Given Sites or Action Components ... 25

Potential Significant Adverse Environmental Impacts ... 29
 Impact on Land (Full EAF Part 2 Item No. 1) .. 29
 Excavation and removal of natural material ... 29
 Construction that would continue for more than one year or in multiple phases 31
 Impacts on Surface Water (Full EAF Part 2 Item No. 3) .. 31
 Construction within or adjoining a freshwater wetland or in the bed or banks of any other water body. .. 31
Impact on Transportation (Full EAF Part 2 Item No. 13) ... 32
Transport of natural material removed from construction sites .. 32
Alteration to the present pattern of movement of people or goods – motor vehicles 34
Alteration to the present pattern of movement of people or goods – railroad 34
Temporary traffic detours and/or traffic delays as a consequence of construction 34
Impact on Noise, Odor and Light (Full EAF Part 2 Item No. 15) ... 35
Temporary increases in noise, odors, dust and outdoor lighting from construction 35
Installation of new road lighting .. 35
Consistency with Community Plans (Full EAF Part 2 Item No. 17) .. 35
Land use components may be different from, or in sharp contrast to, current surrounding land use patterns .. 35
Proposed action is inconsistent with local land use plans or zoning regulations 35
Induction of secondary development impacts (e.g., residential or commercial development not included in the proposed action) .. 35
Fiscal Impact ... 37
Cumulative Impacts ... 39
Irreversible and Irretrievable Commitments of Environmental Resources 40
Growth-inducing Aspects of the Proposed Action ... 40
Use and Conservation of Energy Impacts ... 40
Solid Waste Management Impacts & Consistency .. 40
Impacts on Lands Used in Agricultural Production or within Agricultural Districts 41
Mitigation Measures ... 41
Traffic Mitigation Incorporated in Proposed Transportation Improvements 41
Mitigation Identified for Impacts on Land ... 44
Excavation and removal of natural material .. 44
Construction that would continue for more than one year or in multiple phases 44
Mitigation Identified for Impacts on Surface Water .. 44
Construction within or adjoining a freshwater wetland or in the bed or banks of any other water body ... 44
Mitigation Identified for Impacts on Transportation .. 45
Transport of natural material from construction sites ... 45
Alteration to the present pattern of movement of people or goods – motor vehicles 45
Alteration to the present pattern of movement of people or goods – railroad .. 46
Construction that would continue for more than one year or in multiple phase – Impact to transportation and traffic ... 46
Temporary traffic detours and/or traffic delays as a consequence of construction 47
Degraded Arterial and Intersection LOS Anticipated from the Action ... 47
Direct Induction of Growth by the Action and Associated Increase in Traffic Volume 47
Mitigation Identified for Impacts on Noise, Odor and Light ... 47
Installation of new road lighting .. 47
Temporary increases in noise, odors, dust and outdoor lighting from construction 48
Mitigation Identified for Inconsistencies with Community Plans ... 49
Land use components may be different from, or in sharp contrast to, current surrounding land use patterns ... 49
Proposed action is inconsistent with local land use plans or zoning regulations 49
Induction of secondary development impacts (e.g., residential or commercial development not included in the proposed action) ... 49
Mitigation Identified for Fiscal Impact .. 50
Mitigation Identified for Cumulative Impacts ... 50
Adverse Environmental Impacts that cannot be Avoided or Adequately Mitigated 51
Impacts on Land ... 51
Impacts on Surface Water .. 51
Impacts on Transportation .. 51
Impacts on Noise, Odor and Light ... 51
Consistency with Community Plans ... 52
Fiscal Impacts ... 52
Assumptions Incorporated in this Generic Review regarding Conditions or Criteria Under Which Future Actions will be Undertaken, Funded or Approved ... 52
Consideration of a Range of Reasonable Alternatives .. 53
Regulatory Background Regarding Alternatives .. 53
Alternatives Considered and Approach ... 53
No Action Alternative .. 55
Reduced Alternative A - Route 96 3-Lane to 5-Lane Conversion and Lane Road/Victor Egypt Road/Lynaugh Road Roundabout Only ... 58
Alternative B – Excluding Only the New Local Street Along Ontario Central Railroad 62
List of Tables Included in the Text

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Pg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NYS Agencies Identified Under SEQR as Involved (or Potentially Involved) Agencies</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Generic EIS and Findings: Subsequent Need for SEQR Compliance</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Effect on Corridor Intersection Levels of Service (PM Peak) – From Plan Appendix H</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Effect on Arterial Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Effect on Intersection Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Existing Corridor Intersection Levels of Service (PM Peak)</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Alternative A Effect on Arterial Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>Alternative A Effect on Intersection Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>Alternative B Effect on Arterial Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>Alternative B Effect on Intersection Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)</td>
<td>65</td>
</tr>
</tbody>
</table>
List of Figures Included in the Text

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Pg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Five Corridor Segments</td>
<td>14</td>
</tr>
</tbody>
</table>
List of Figures Appended to the Text

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Location Map</td>
</tr>
<tr>
<td>2</td>
<td>Project Number 1 New Local Street along Ontario Central RR - Overview</td>
</tr>
<tr>
<td>3</td>
<td>Project Number 1 New Local Street along Ontario Central RR – Route 251 to Eastern Terminus</td>
</tr>
<tr>
<td>4</td>
<td>Project Number 1 New Local Street along Ontario Central RR – Eastern Terminus</td>
</tr>
<tr>
<td>5</td>
<td>Project Number 1 New Local Street along Ontario Central RR – School Street Roundabout</td>
</tr>
<tr>
<td>6</td>
<td>Project Number 2 Route 96 3-Lane to 5-Lane Conversion - Overview</td>
</tr>
<tr>
<td>7</td>
<td>Project Number 2 Route 96 3-Lane to 5-Lane Conversion - Alignment</td>
</tr>
<tr>
<td>8</td>
<td>Project Number 3 Route 251/Lane Road Connection - Overview</td>
</tr>
<tr>
<td>9</td>
<td>Project Number 3 Route 251/Lane Road Connection - Intersection</td>
</tr>
<tr>
<td>10</td>
<td>Project Number 4 Omnitech Place/Willowbrook Road Connection - Overview</td>
</tr>
<tr>
<td>11</td>
<td>Project Number 4 Omnitech Place/Willowbrook Road Connection - Intersection</td>
</tr>
<tr>
<td>12</td>
<td>Project Number 5 Plastermill Road/Collett Road/Delray Drive Connection – Overview</td>
</tr>
<tr>
<td>13</td>
<td>Project Number 5 Plastermill Road/Collett Road/Delray Drive Connection – Grade Crossing</td>
</tr>
<tr>
<td>14</td>
<td>Project Number 6 Lane Road/Victor Egypt Road/Lynaugh Road Roundabout - Overview</td>
</tr>
<tr>
<td>15</td>
<td>Project Number 6 Lane Road/Victor Egypt Road/Lynaugh Road Roundabout – Alignment</td>
</tr>
<tr>
<td>16</td>
<td>Environmental Setting Project Number 1 New Local Street</td>
</tr>
<tr>
<td>17</td>
<td>Environmental Setting Project Number 2 Route 96 3-Lane to 5-Lane Conversion</td>
</tr>
<tr>
<td>18</td>
<td>Environmental Setting Project Number 3 Route 251/Lane Road Connection</td>
</tr>
<tr>
<td>19</td>
<td>Topography Project Number 3 Route 251/Lane Road Connection</td>
</tr>
<tr>
<td>20</td>
<td>Environmental Setting Project Number 4 Omnitech Place/Willowbrook Lane Connection</td>
</tr>
<tr>
<td>21</td>
<td>Topography Project Number 4 Omnitech Place/Willowbrook Lane Connection</td>
</tr>
<tr>
<td>22</td>
<td>Environmental Setting Project Number 5 Plastermill Road/Collett Road/Delray Drive Connection</td>
</tr>
<tr>
<td>23</td>
<td>Topography Project Number 5 Plastermill Road/Collett Road/Delray Drive Connection</td>
</tr>
<tr>
<td>24</td>
<td>Environmental Setting Project Number 6 Lane Road/Victor Egypt Road/Lynaugh Road Roundabout</td>
</tr>
</tbody>
</table>

Town of Victor Town Board, Lead Agency
DRAFT Generic Environmental Impact Statement viii Route 96 Transformative Corridor Strategic Infrastructure Plan Adoption & Implementation
List of Appendices

A Route 96 Transformative Corridor Strategic Infrastructure Plan, March 21, 2018, T.Y. Linn International
B Funding Options and Transportation Development District Overview
C SEQR FEAF Part 1
D Town of Victor Town Board Resolution 233 – Classification and Lead Agency
E Town of Victor Town Board Resolution 408 – Determination of Significance
F SEQR FEAF Part 2
G SEQR FEAF Part 3 and Determination of Significance
H Appendix H of the Route 96 Transformative Corridor Strategic Infrastructure Plan, March 21, 2018, T.Y. Linn International
I Route 96 High Priority Projects Construction Estimates
J Intersection Levels of Service PM Peak - No Build and Full Build (All Projects)
K Arterial Levels of Service PM Peak - No Build and Full Build (All Projects)
L Detailed Measures of Effectiveness PM Peak - No Build and Full Build (All Projects)
M Performance PM Peak - No Build and Full Build (All Projects)
N Intersection Levels of Service PM Peak- Projects 2 and 6, and Projects 2 thru 6
O Arterial Levels of Service PM Peak - Projects 2 and 6, and Projects 2 thru 6
P Detailed Measures of Effectiveness PM Peak - Projects 2 and 6, and Projects 2 thru 6
Q Performance PM Peak - Projects 2 and 6, and Projects 2 thru 6
List of Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOE</td>
<td>Army Corps of Engineers</td>
</tr>
<tr>
<td>DEC</td>
<td>Department of Environmental Conservation</td>
</tr>
<tr>
<td>DEIS</td>
<td>Draft Environmental Impact Statement</td>
</tr>
<tr>
<td>DGEIS</td>
<td>Draft Generic Environmental Impact Statement</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>EAF</td>
<td>Environmental Assessment Form</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>FEIS</td>
<td>Final Environmental Impact Statement</td>
</tr>
<tr>
<td>FEAF</td>
<td>Full Environmental Assessment Form</td>
</tr>
<tr>
<td>FGEIS</td>
<td>Final Generic Environmental Impact Statement</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>GEIS</td>
<td>Generic Environmental Impact Statement</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Protection Act</td>
</tr>
<tr>
<td>NWI</td>
<td>National Wetland Inventory</td>
</tr>
<tr>
<td>NYS</td>
<td>New York State</td>
</tr>
<tr>
<td>NYS DEC</td>
<td>New York State Department of Environmental Conservation</td>
</tr>
<tr>
<td>NYS DOT</td>
<td>New York State Department of Transportation</td>
</tr>
<tr>
<td>ROW</td>
<td>Right Of Way</td>
</tr>
<tr>
<td>RR</td>
<td>Railroad</td>
</tr>
<tr>
<td>SEQR</td>
<td>State Environmental Quality Review</td>
</tr>
<tr>
<td>SEQRA</td>
<td>State Environmental Quality Review Act</td>
</tr>
<tr>
<td>STB</td>
<td>Surface Transportation Board</td>
</tr>
<tr>
<td>TD District</td>
<td>Transportation Development District</td>
</tr>
<tr>
<td>TRB</td>
<td>Transportation Research Board</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>US ACOE</td>
<td>United States Army Corps of Engineers</td>
</tr>
</tbody>
</table>
Introductory Summary

The Proposed Action
The proposed Action that is the subject of this State Environmental Quality Review (“SEQR”) includes three primary components (see the description below that begins on page 9 for more detail):

1) Formal adoption of a strategic infrastructure plan (“the Plan”) prepared regarding traffic congestion within the corridor surrounding NYS Route 96 in the Town of Victor (see Appendix A for the Plan);
2) Implementation of the strategic infrastructure plan via the undertaking, funding and approval of six high priority transportation improvement projects recommended in the plan (see the Plan in Appendix A and Figures 1, 2, 6, 8, 10, 12, and 14); and,
3) Establishment of a Transportation Development District recommended in the plan as a method useful to facilitate funding of the six recommended projects (for an overview, see Appendix B).

Procedural History
The segment of NYS Route 96 and associated area (“the Corridor”) located within the Town of Victor (“the Town”) has been recognized by the Finger Lakes Economic Development Council as one of three “Transformative Corridors”, meaning that it is a critical component of the regional transportation system supporting job growth, increasing regional wealth, driving private sector investment, and reducing poverty. However, there is a history of increasing traffic congestion within the Corridor, particularly during the peak morning and evening commuter periods and on weekends. This congestion reduces traffic safety, impedes the passage of visitors and commuters within the Town, diminishes the quality of life for residents, and threatens continued growth and economic development. In response, the Town Board of the Town of Victor (“the Town Board”) commissioned a study, undertaken in partnership with the Village of Victor, Ontario County, the Genesee Transportation Council, the New York State (“NYS”) Department of Transportation (“DOT”), and Finger Lakes Railway (operator of the Ontario Central Railroad), to identify improvements within the Corridor that could help to avoid or reduce limitations that congestion would otherwise impose upon future travel and development opportunities within the Corridor.

In March of 2018, the Town Board was presented with the completed “Route 96 Transformative Corridor Strategic Infrastructure Plan” (“the Plan”, see Appendix A). The Plan calls for the development of six “High Priority Projects” (“the Projects” or “the six Projects”, see the Location Map in Figure 1) as well as the potential establishment of a Transportation Development District (“the TD District”, a type of Development Facilitation Improvement District under NYS law, see Appendix B). Therefore, in addition to action to formally adopt the Plan, the Town Board is also considering implementing the Plan by undertaking, funding and/or approving the Projects and establishing the recommended TD District (together with formal adoption of the Plan, collectively referred to hereinafter as “the Action”).

Although adoption of the Plan would involve no physical activity, its adoption could be considered the adoption of a supplement to the Town of Victor’s present land use plan (also known as the 2015 Comprehensive Plan). Furthermore, although neither plan adoption nor establishment of the TD District would involve physical activity, construction of the recommended Projects obviously would. In fact, as
described in the SEQR Part 1 Full Environmental Assessment Form (“FEAF”, see Appendix C) accepted by the Town Board on June 4, 2018 (Resolution No. 233, see Appendix D), construction of the Projects would have the combined potential to disturb (in the aggregate) well over 10 acres and potentially as much as 25 to 30 acres at multiple sites within the Town. Accordingly, the Town Board determined (Resolution No. 233, see Appendix D) that the Action is a Type I action as defined under the State Environmental Quality Review Act (“SEQRA”) and the implementing regulations promulgated by the NYS Department of Environmental Conservation (“DEC”).

Construction of the Projects would also likely require approval, undertaking and/or funding from one or more other local, regional and state government agencies needing to comply with SEQRA, including the Village of Victor, the County of Ontario, the NYS DOT, and the NYS DEC. That being so, and given the SEQR Type I classification, the Town Board determined (Resolution No. 233, see Appendix D) that that the Action was one that would likely involve one or more other agencies and that an environmental review coordinated with other involved agencies and necessitating establishment of a lead agency would therefore be required under SEQRA. Accordingly, on June 4, 2018 the Town Board announced (Resolution No. 233, see Appendix D) its intent to serve as Lead Agency in the environmental review of the Action and subsequently had each of the other potential involved agencies provided a copy of the Part 1 Environmental Assessment Form accompanied by a request that they consent to the Town Board’s establishment as Lead Agency.

As of July 6, 2018, thirty days having passed since the notification of involved agencies, none had objected to establishment of the Town Board as Lead Agency. Accordingly, on July 9, 2018 the Town Board determined (Resolution No. 408, see Appendix E) that it was successfully established as the Lead Agency empowered under SEQRA to conduct a coordinated environmental review of the Action.

On July 9, 2018, the Town Board accepted (Resolution No. 408, see Appendix E) the FEAF Part 2 and Part 3 describing the Action (see Appendices F and G). Part 2 of the FEAF identified several instances in which moderate to large environmental impacts may occur as a consequence of the proposed Action including impacts on: land; surface water; transportation; noise, odor and light; and, consistency with community plans. Part 3 of the FEAF evaluated and assessed multiple potential impacts to the environment that could occur as a consequence of the Action. Accordingly, the Town Board determined (Resolution No. 408, see Appendix E) that the Action may result in one or more significant adverse impacts on the environment and that an environmental impact statement (“EIS”) would necessarily be prepared to further assess the impacts and possible mitigation and to explore alternatives to avoid or reduce those impacts.

The Town Board also determined (Resolution No. 408, see Appendix E) that the Action: 1) consists of a number of separate actions in a given geographic area which, if considered singly may have minor impacts, but if considered together may have significant impacts; 2) includes a sequence of actions contemplated by the Town of Victor as well as other agencies; 3) includes separate actions having generic or common impacts; 4) represents an entire program or plan having wide application; and, 5) represents an entire program or plan which will restrict the range of future alternative policies or projects. Accordingly, the Town Board determined (Resolution No. 408, see Appendix E) that the
environmental impact statement to be prepared would be a “generic” environmental impact statement, as defined under SEQRA.

The Town Board’s Determination of Significance requiring preparation of a Draft Generic EIS was subsequently filed with: 1) with the Chief Executive Officer of any political subdivision within which the proposed Action would be principally located; 2) with other involved agencies; and, 3) with the Environmental Notice Bulletin. This present document is the Draft Generic EIS prepared pursuant to the Town Board’s Determination of Significance.

Three procedural aspects of the present review require some explanation more detailed than that provided in the foregoing history: the scope of the proposed action; the identification of multiple agencies as “Involved Agencies”; and, the reliance on a “generic” environmental impact statement.

Scope of the Proposed Action

SEQRA, together with the implementing regulations promulgated by NYS DEC (codified at 6 CRR-NY Part 617, hereinafter “the Regulations”), indicate that “the basic purpose of SEQR is to incorporate the consideration of environmental factors into the existing planning, review and decisionmaking processes of state, regional and local government agencies at the earliest possible time” (see §617.1 (c) of the Regulations). To do so, SEQRA requires that “all agencies determine whether the actions they directly undertake, fund or approve may have a significant impact on the environment, and, if it is determined that the action may have a significant adverse impact, prepare or request an environmental impact statement” (see §617.1 (c) of the Regulations).

In this instance, the Town Board initially considered defining the scope of the Action to include only formal adoption of the Plan and to exclude any action directly related to the six Projects or the establishment of a TD District. However, §617.3 (g) of the Regulations provides as follows:

“(g) Actions commonly consist of a set of activities or steps. The entire set of activities or steps must be considered the action, whether the agency decision-making relates to the action as a whole or to only a part of it.

(1) Considering only a part or segment of an action is contrary to the intent of SEQR. If a lead agency believes that circumstances warrant a segmented review, it must clearly state in its determination of significance, and any subsequent EIS, the supporting reasons and must demonstrate that such review is clearly no less protective of the environment. Related actions should be identified and discussed to the fullest extent possible.

(2) If it is determined that an EIS is necessary for an action consisting of a set of activities or steps, only one draft and one final EIS need be prepared on the action provided that the statement addresses each part of the action at a level of detail sufficient for an adequate analysis of the significant adverse environmental impacts. . . .”

Accordingly, the Town Board expanded the scope of the action to include undertaking, funding, and/or approving the six Projects as well as efforts to establish a TD District, in the belief that such an approach
would: 1) be most consistent with the foregoing requirement to consider the entire set of activities or steps; 2) be most protective of the environment; 3) be in keeping with the foregoing imperative to incorporate environmental considerations “at the earliest possible time”; and, 4) otherwise promote the public interest by potentially facilitating the earliest solution to the traffic challenges presently confronting the community.

Involved Agencies

For actions which, like that considered in this present review, SEQRA specifies a Type 1 classification (see §617.4 (b) of the Regulations), an agency proposing to undertake, fund, or approve the action must transmit Part 1 of an EAF describing the action to all involved agencies as soon as possible and notify them that a lead agency responsible for completion of a coordinated review must be agreed upon within 30 calendar days of the transmittal (see §617.6 (b)(3) of the Regulations). SEQRA defines an “involved agency” as “an agency that has jurisdiction by law to fund, approve or directly undertake an action” (see §617.2 (s) of the Regulations). The same section also provides that: “... if an agency will ultimately make a discretionary decision to fund, approve or undertake an action, then it is an ‘involved agency’ notwithstanding that it has not received an application for funding or approval at the time the SEQR process is commenced”.

In this instance, the decision to expand the scope of the proposed action to include the six Projects and efforts to establish a TD District also expanded the group of involved agencies. Whereas only the Town of Victor would likely have adopted the Plan, other agencies would potentially be involved in funding, approving and/or undertaking one or more of the six Projects and possibly in establishment of a TD District. The table that follows (Table 1) summarizes the role of each state agency or municipality as involved, or as potentially involved, in undertaking, funding or approving different components of the Action. The underlying specifics relative to each Action component are then described in the paragraphs that follow the table.

<table>
<thead>
<tr>
<th>NYS Agencies Identified Under SEQR as Involved (or Potentially Involved) Agencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Component</td>
</tr>
<tr>
<td>Plan Adoption</td>
</tr>
<tr>
<td>Project Number 1</td>
</tr>
<tr>
<td>Project Number 2</td>
</tr>
<tr>
<td>Project Number 3</td>
</tr>
<tr>
<td>Project Number 4</td>
</tr>
<tr>
<td>Project Number 5</td>
</tr>
<tr>
<td>Project Number 6</td>
</tr>
<tr>
<td>TD District Establishment</td>
</tr>
</tbody>
</table>

Table 1
It should be noted that no federal agencies (e.g., the US ACOE, the Surface Transportation Board, or federal highway funding agencies) have been identified as involved agencies under SEQRA even though they may be asked to approve and/or fund the Projects as they are not governed by SEQRA and are subject instead to the National Environmental Protection Act.

Plan Adoption. Adoption of the Plan would likely be undertaken or approved by the Town of Victor alone. However, there is some potential that the Village of Victor may also choose to formally adopt the Plan. For that reason, both the Town and Village of Victor have both been identified as involved, or potentially involved, agencies relative to adoption of the Plan.

Project Number 1. Project Number 1 would involve development of a new street within both the Town and Village of Victor. The Project could be undertaken by the Town of Victor and/or the Village of Victor. Funding for Project Number 1 could come from federal agencies, NYS DOT, and possibly the Town and/or Village of Victor. Regarding required approvals, the project would include improvements to existing Town roads and Village streets, would include improvements at intersections with NYS Routes 96 and 251, and would likely require approvals from both the NYS DEC and the US Army Corps of Engineers (“US ACOE”) relative to wetland and/or stream impacts. In addition, Ontario County would likely be required to approve any real estate conveyances or transactions involving the right-of-way (“ROW”) upon which the Ontario Central Railroad presently operates as it is owned by the County. Accordingly, the Town of Victor, the Village of Victor, Ontario County, NYS DOT, and NYS DEC were all identified as involved (or potentially involved) relative to Project Number 1.

Project Number 2. Project Number 2 would reconfigure a segment of Route 96 from just south of Omnitech Place to the intersection with Route 251. The Project would most likely be undertaken by the NYS DOT. Funding for Project Number 2 could come from federal agencies, NYS DOT, and possibly the Town of Victor. The Project could require approvals from the NYS DEC and/or the US ACOE relative to stream impacts. Accordingly, the Town of Victor, the NYS DOT and the NYS DEC were all identified as involved (or potentially involved) agencies relative to Project Number 2.

Project Number 3. Project Number 3 would extend Lane Road and align Lane Road with Route 251 to create a new intersection with a signal. The Project would most likely be undertaken by the Town of Victor. Improvements at the Route 96/Route 251 intersection would require NYS DOT approval. Funding for Project Number 3 could come from federal agencies, NYS DOT, and possibly the Town of Victor. Accordingly, the Town of Victor and the NYS DOT were both identified as involved (or potentially involved) relative to Project Number 3.

Project Number 4. Project Number 4 would extend Willowbrook Road to create a new signalized intersection at Route 96 and Omnitech Place. The Project would most likely be undertaken by the Town of Victor. Improvements at the intersection with NYS Route 96 would require approval from the NYS DOT. Funding for Project Number 4 could come from federal agencies, NYS DOT, and possibly the Town of Victor. The Project could require approvals from the NYS DEC and/or the US ACOE relative to stream impacts. Accordingly, the Town of Victor, the NYS DOT and the NYS DEC were all identified as involved (or potentially involved) relative to Project Number 4.
Project Number 5. Project Number 5 would extend Collet Road to create a new two-way stop controlled intersection with Plastermill Road and Delray Drive that would include an at-grade crossing of the Ontario Central Railroad. The Project would most likely be undertaken by the Town of Victor. Funding for Project Number 4 could come from federal agencies, NYS DOT, and possibly the Town of Victor. The Project could require approvals from Ontario County relative to the proposed development of a crossing of the Ontario Central Railroad ROW. Accordingly, the Town of Victor, Ontario County and the NYS DOT were all identified as involved (or potentially involved) relative to Project Number 5.

Project Number 6. Project Number 6 would create a roundabout at the intersection of Lane Road, Victor Egypt Road, and Lynaugh Road. The Project would most likely be undertaken by the Town of Victor, but could also be undertaken by Ontario County (Victor Egypt Road is a County Road). Improvements to the Victor Egypt Road intersection would require approval by Ontario County. The Project could require approvals from the NYS DEC and/or the US ACOE relative to stream impacts. Funding for Project Number 6 could come from federal agencies, NYS DOT, and possibly Ontario County or the Town of Victor. Accordingly, the Town of Victor, Ontario County, the NYS DOT and the NYS DEC were all identified as involved (or potentially involved) relative to Project Number 6.

Establishment of a TD District. Regarding the establishment of a TD District, it has appeared that this would be undertaken primarily by the Town of Victor. However, there is some possibility that the Village of Victor might also choose to participate in establishing such a district. For that reason, both the Town and Village of Victor have been identified as involved, or potentially involved, agencies with respect to efforts to establish a TD District.

Reliance on a Generic Environmental Impact Statement

As already described above, the Town Board expanded the scope of the Action to include undertaking, funding, and/or approving six High Priority Projects as well as efforts to establish a TD District. Although this approach is consistent with the SEQRA requirement to consider the entire set of activities or steps (see §617.3 (g) of the Regulations) as well as the SEQRA imperative to incorporate environmental considerations “at the earliest possible time” (see §617.1 (c) of the Regulations), it also means that many questions remain regarding specific aspects of the six projects as well as regarding the recommended TD District. These include details of the project designs and the precise extent of potential environmental impacts such as those to wetlands. Other questions regarding which agency might undertake a specific project and/or how it might be funded also remain unanswered.

The SEQR Regulations authorize reliance on “generic” environmental impact statements. Specifically, the Regulations provide that (see §617.10 (a) of the Regulations):

“A generic EIS may be used to assess the environmental impacts of:

(1) a number of separate actions in a given geographic area which, if considered singly, may have minor impacts, but if considered together may have significant impacts;

(2) a sequence of actions, contemplated by a single agency or individual;

(3) separate actions having generic or common impacts; or
(4) an entire program or plan having wide application or restricting the range of future alternate policies or projects, including new or significant changes to existing land use plans, development plans, zoning regulations or agency comprehensive resource management plans.”

In this instance, the Action, as defined by the Town Board, is consistent with many aspects of the four foregoing criteria. In fact, the Town Board found (Resolution No. 408, see Appendix E), that given the inclusion of the six Projects, the Action did include a number of separate actions in a given geographic area that could have minor impacts if considered singly, but might have more significant impacts if considered together. This is particularly true with respect to the six Projects and potential traffic impacts during construction. In the same Resolution, the Town Board also found that the Action does include a sequence of actions contemplated by the Town of Victor, as the Town would likely be involved in all components of the Action including each of the six Projects. This is also somewhat true with respect to NYS DOT which would likely be involved in more than one of the six Projects. The Town Board also found that the six Projects, while separate, could have generic or common impacts, particularly during construction. Finally, in the Town Board’s view, the Action does include an entire program or plan having wide application and is one that will likely restrict the range of future alternative policies or projects. Accordingly, the Town Board determined (Resolution No. 408, see Appendix E) that the EIS to be prepared would be a “generic” environmental impact statement, as defined under SEQRA.

Sections 617.10 (a) and 617.10 (c) of the Regulations provide detailed guidance regarding the approach to be taken in generic EISs. Accordingly, this Draft Generic EIS intends to incorporate the approach described in Sections 617.10 (a) and 617.10 (c) of the Regulations insofar as it is applicable. In summary, it is intended for this Draft Generic EIS to:

- Be broader, and more general than a site or project specific EIS;
- Discuss the logic and rationale for the choices advanced;
- Present and analyze, in general terms, hypothetical scenarios that could or are likely to occur;
- Identify the important elements of the natural resource base as well as the existing and projected cultural features, patterns and character;
- Include assessments of specific impacts if such details are available, although in many cases these assessments will be based on conceptual information;
- Set forth specific conditions or criteria under which future actions will be undertaken or approved, including thresholds and criteria for supplemental EISs to reflect specific significant impacts, such as site specific impacts, not adequately addressed or analyzed in this generic EIS; and,
- Discuss in general terms the constraints and consequences of any narrowing of future options.

Regarding the need for and effect upon future assessments, §617.10 (d) of the Regulations provides specific guidance relative to the subsequent need for SEQR compliance following the filing of a final generic EIS and its findings statement. The outcome generally depends upon whether the subsequent action or component would be carried out in conformance with the conditions and thresholds established in the generic EIS or its findings statement, whether the generic EIS and its findings statement addressed the subsequent action or component adequately, and whether the subsequent action or component may have one or more significant adverse environmental impacts.
With respect to this Action, for example, at such time as one of the six Projects has been designed in detail and is about to be undertaken, funded and/or approved, the question of compliance with SEQR will need to be reconsidered by involved agencies (the same would also apply to any new component subsequently included in an expanded version of the Action). Regarding the outcome, there are four possible scenarios (also illustrated in Table 2 that follows):

1) The project component or subsequent action was adequately addressed in both the generic EIS and its findings statement and will be carried out in conformance with the conditions and thresholds established in the generic EIS or its findings statement:
 - No further SEQR compliance would be required.

2) The project component or subsequent action was adequately addressed in the generic EIS but not addressed, or inadequately addressed, in the findings statement for the generic EIS.
 - An amended findings statement would need to be prepared.

3) The project component or subsequent action was not adequately addressed in the generic EIS and may have one or more significant adverse environmental impacts.
 - A supplement to the final generic EIS would need to be prepared.

4) The project component or subsequent action was not adequately addressed in the generic EIS and will not result in any significant environmental impacts.
 - A Negative Declaration (Determination of Significance) would need to be prepared.

GENERIC EIS and FINDINGS: SUBSEQUENT NEED FOR SEQR COMPLIANCE

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>SCENARIO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was the project component or action adequately addressed in the generic EIS?</td>
<td>YES</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Was the project component or action adequately addressed in the generic findings statement?</td>
<td>YES</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Will the project component or action be carried out in conformance with the conditions and thresholds established in the generic EIS or findings statement?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May the project component or action have any significant adverse environmental impacts?</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

REQUIREMENT OUTCOME

- Nothing Further
- Amended Findings Statement
- Final GEIS Supplement
- Negative Declaration

Table 2
The Proposed Action, Purpose, Public Need and Benefits

The Proposed Action
As indicated in the foregoing Introductory Summary, a study was undertaken by the Town of Victor in partnership with the Village of Victor, Ontario County, the Genesee Transportation Council, the New York State Department of Transportation, and Finger Lakes Railway (operator of the Ontario Central Railroad) in order to identify potential improvements within the Route 96 corridor that could help to avoid or reduce limitations that congestion would otherwise impose upon future travel and development opportunities. The study culminated in a report presented to the Town Board in March of 2018 (the “Route 96 Transformative Corridor Strategic Infrastructure Plan”, hereinafter “the Plan”, included here as Appendix A). The Plan calls for the development of six “High Priority Projects” (“the Projects”, see the Location Map in Figure 1) as well as the potential establishment of a Transportation Development District (“the TD District”, a type of Development Facilitation Improvement District under NYS law, see the overview included as Appendix B). In addition to formal adoption of the Plan, the Victor Town Board is also considering implementing the Plan by undertaking, funding and/or approving the six Projects and establishing the recommended TD District. The Action that is the subject of this review therefore includes each of the foregoing components: adoption of the Plan; undertaking, funding and/or approval of the six High Priority Projects; and, establishment of a TD District.

Plan Adoption
The Plan states its purpose as making “the Route 96 Corridor through the Town and Village of Victor safer and more efficient for all users of the roadway” (see p. 2 of the Plan, Appendix A). Following an introduction, the Plan includes four chapters focused on, respectively: “What the Community Thinks”; “What Needs to Be Fixed”; “What Needs To Happen”; and, “What Comes Next”. The Plan offers the following conclusion (see p. 22 of the Plan, Appendix A): “The community of Victor faces a critical decision: accept worsening congestion on Route 96 that will compromise and likely harm quality of life and economic opportunity or take action by implementing six projects that have the demonstrated potential to alleviate this excess delay. A strong case has been made that the funding for these improvements should come from Federal and NYS transporation and economic development programs. If monies from these sources do not materialize, there are mechanisms that would allow the Town and Village to raise the revenues to complete these projects on their own.” This last general reference to “mechanisms” is more specifically a reference to the potential establishment of a TD District.

Although formal adoption of the Plan would involve no physical activity and might be characterized by some as a mere acceptance of the included information and recommendations, adoption would also represent a planning and/or policy making activity that could commit the Town and other agencies to a definite course of future decisions with the potential to ultimately affect the environment. Finally, as the Plan addresses a critical issue identified but not finally resolved in the Town of Victor’s 2015 Comprehensive Plan, formal adoption could also be considered to be the adoption of a supplement to Victor’s land use plan.
Undertaking, Funding and/or Approval of Six High Priority Projects

- Project Number 1 – New Local Street along Ontario Central Railroad

Project Number 1 involves the development of a new local street, more than two miles in length, along a segment of the existing Ontario Central Railroad ROW (see Figures 2, 3, 4 and 5).

The project would convert a segment of the Ontario Central Railroad ROW, characterized in the Plan as presently underutilized, to a “Complete Street”, serving motorists, bicyclists, and pedestrians. The new street would begin at Route 251 and run parallel to Route 96, terminating at either a roundabout southeast of Lynaugh Road (presently planned for construction in 2019) or at a new traffic signal at Plastermill Road.

The project would also include development of:

- At Route 444 (Maple Avenue), a new traffic signal;
- At Route 251, a dedicated left turn lane for traffic from Route 96 and Lane Road;
- At Route 251, dedicated right and left turn lanes for traffic onto Route 251;
- At the intersection of School Street/Adam Street, a mini-roundabout; and,
- At the intersection of Route 96/School Street, removal of the existing signal and conversion to Right-In/Right-Out only.

Although the design is only conceptual at this point, it is likely that it may include the installation of street lights where none now exist. The project could easily require more than one year and/or multiple phases to complete.

Construction of Project Number 1 would require the removal of railroad improvements presently in place within the segment of the existing ROW between the western terminus near Route 251 to and the eastern terminus near either Lynaugh Road or Plastermill Road. Obviously, this would necessitate an abandonment of the railroad’s present use of that segment. In the absence of other measures, this abandonment would persist indefinitely.

The construction cost for Project Number 1 has been estimated to range from $7.3 million to $10.0 million (for a construction estimate, see Appendix I).

- Project Number 2 – Route 96 3-Lane to 5-Lane Conversion

Project Number 2 involves the conversion of a mile-long segment of Route 96 from 3-lanes to 5-lanes (see Figures 6 and 7).

Project Number 2 would reconfigure the existing segment of Route 96 from just south of Omnitech Place to Route 251 from one travel lane in each direction with a center turning lane to two travel lanes in each direction (four through travel lanes) with a center turning lane. The entire length would be curbed with eight-foot shoulders, 12-foot through travel lanes, and a 14-foot center turn lane. This configuration would best match the adjoining segment of Route 96 to the north beginning at the Main Street Fishers/Rowley Road intersection. Minimal right of way would be needed.
This improvement would work directly in concert with the new Local Street along the Ontario Central Railroad (Project Number 1) to better distribute existing and projected traffic volumes, which would reduce delay on a corridor-wide basis. The Project is also designed to accommodate the new Route 251/Lane Road Connection (Project Number 3).

The construction cost for Project Number 2 has been estimated to range from $1.8 million to $2.0 million (for a construction estimate, see Appendix I).

- **Project Number 3 – Route 251/Lane Road Connection**

Project Number 3 involves development of a connection between Route 251 and Lane Road (see Figures 8 and 9).

The Project would align Route 251 and Lane Road to create a new intersection with a traffic signal. Lane Road would be shifted to the north. The Route 251/Route 96 intersection is presently a signalized intersection with a left turn only and right turn only from Route 251 onto Route 96 and no dedicated turn lanes from Route 96 onto Route 251. The redesigned intersection would feature the following lane configurations:

- Route 251: 300-foot left turn only lane onto northbound Route 96 and combined through-right lane to Lane Road and southbound Route 96;
- Route 96 Southbound: two through lanes (per Route 96 3-Lane to 5-Lane Conversion Project Number 2) and a 200-foot right turn only lane onto Route 251;
- Lane Road: 200-foot right turn only lane onto northbound Route 96 and combined through-left lane to Route 251 and southbound Route 96; and,
- Route 96 Northbound: two through lanes (per Route 96 3-Lane to 5-Lane Conversion Project Number 2) and a 200-foot left turn only lane onto Route 251.

The construction cost for Project Number 3 has been estimated to range from $470,000 to $540,000 (for a construction estimate, see Appendix I).

- **Project Number 4 – Omnitech Place/Willowbrook Road Connection**

Project Number 4 involves development of a connection between Omnitech Place and Willowbrook Road (see Figures 10 and 11).

The Project would extend Willowbrook Road to create a new signalized intersection at Route 96 and Omnitech Place. The Willowbrook Road extension would feature one lane in each direction with six-foot paved shoulders. The redesigned intersection would feature the following new lane configurations:

- Willowbrook Road: combined left-through-right lane to Route 96 and Omnitech Place;
- Route 96 Northbound: two through lanes and a 100-foot left turn only lane onto Omnitech Place; and,
- Route 96 Southbound: two through lanes (per Route 96 3-Lane to 5-Lane Conversion Project Number 2) and a 100-foot left turn only lane onto Willowbrook Road.
The construction cost for Project Number 4 has been estimated to range from $520,000 to $600,000 (for a construction estimate, see Appendix I).

- **Project Number 5 – Plastermill Road/Collett Road/Delray Drive Connection**

 Project Number 5 involves development of a connection between Plastermill Road/Collett Road and Delray Drive (see Figures 12 and 13).

 The Project would extend Collett Road to create a new tow-way stop controlled intersection with Plastermill Road and Delray Drive. This would include an at-grade crossing of the Ontario Central Railroad. Although none is presently proposed as the crossing location is not anticipated to experience heavy railroad use, there is the opportunity to create a dedicated right turn only lane on Plastermill Road for northeast bound traffic should railroad use increase resulting in the need to reduce longer queues with the potential to impact through traffic.

 The construction cost for Project Number 5 has been estimated to range from $330,000 to $360,000 (for a construction estimate, see Appendix I).

- **Project Number 6 – Lane Road/Victor Egypt Road/Lynaugh Road Roundabout**

 Project Number 6 would construct a Lane Road/Victor Egypt Road/Lynaugh Road roundabout in place of the existing intersection at its present location (see Figures 14 and 15).

 The proposed roundabout at the intersection of Lane Road, Victor Egypt Road, and Lynaugh Road would replace the present four-leg intersection that has stop signs for vehicles on Lane Road and Lynaugh Road seeking to access or cross Victor Egypt Road. The speed limits are presently 55 mph on Victor Egypt Road, 50 mph on Lynaugh Road, and 40 mph on Lane Road. The geometric design of the roundabout would be supplemented with signage and, if necessary, marking of the approaches to alert drivers to the appropriate speed.

 The construction cost for Project Number 6 has been estimated to range from $1.5 million to $2.0 million.

District Establishment

The Plan recommends potential establishment of a TD District in response to the potential need for Town or Village funds to implement some or all of the six High Priority Projects. Such a district would allow some portion of the costs of constructing some or all of the six Projects to be raised and financed locally by levying assessments on a benefits-derived basis. As described more fully in Appendix B, this would require that the Town Board and/or Village Board take various steps to generate revenue for the High Priority Projects (and possibly, per their discretion, additional future improvements). These steps would include delineating the boundaries of a proposed TD District (both the Plan and the Town Board [see Resolution 233, Appendix D] have noted the potential use of an existing district, known as the Route 96/251 Overlay District, as an alternative to the delineation of new district boundaries) and receiving approval from the State Legislature and the Governor (a municipality does not have the inherent authority to form a TD District, as it would for the formation of a sewer or water district). Once
the TD District were successfully established, financing to support construction costs could presumably be obtained at a low interest rate since there would be an ascertained source for repayment for the upfront costs of construction.

Purpose of the Proposed Action
The underlying purpose of the proposed Action is to reduce traffic congestion by improving roadway capacity as well as by altering the present pattern of vehicular movement of both people and goods. Although all of the projects have some potential to alter such patterns, Projects Number 1 (a new local street along the Ontario Central Railroad), Number 3 (development of a Route 251/Lane Road connection), Number 4 (development of an Omnitech Place/Willowbrook Road connection), and Number 5 (development of a Plastermill Road/Collett Road/Delray Drive connection) have the most potential in this regard. As the anticipated impacts to transportation patterns will be primarily positive, it is important that they be as significant and large as possible.

Public Need for the Proposed Action
As stated in the Plan, traffic is a primary concern in Victor. When the volume of vehicles on Route 96 exceeds its ability to move them efficiently, excess delay (or congestion) occurs. Furthermore, drivers seeking to avoid spending time stuck in traffic on Route 96 use alternate routes. This frequently creates a ripple effect of spillover traffic onto roads adjoining Route 96 that has negative impacts on residential neighborhoods and ultimately leads to unfavorable views of any and all future development, regardless of its merit.

As described in the Plan, the population of Victor increased from 5,784 residents in 1980 to an estimated 14,496 in 2015 – an increase of more than 150 percent. To put this in perspective, over the last 35 years Victor has accounted for nearly half of all of the population growth in Ontario County and one of every 12 new residents to the 4,700-square mile Finger Lakes Region has chosen to call Victor home. Furthermore, businesses locate near customers and prospective employees. This explains the approximately 70 commercial and industrial projects approved in the Route 96 Corridor over the last five years.

As the involved traffic patterns are complex and interdependent, there likely remains some potential for the mix of anticipated pattern changes to include some that could be considered negative rather than positive despite the significant improvement overall. This potential is considered below under the topical headings “Potential significant adverse environmental impacts” and “Adverse Environmental Impacts that cannot be Avoided or Adequately Mitigated”.

Before identifying solutions to the traffic issues in Victor, those developing the Plan drilled down in an effort to understand what they are, where they are, and why they’re occurring. To identify the opportunities and issues to be evaluated, the Plan relied on input received via a stakeholder survey, two public meetings, and field observations (see Chapter 2 of the Plan). This was then supplemented with an analysis of current data for numerous factors, as well as the foundational information on existing and projected traffic and land use included in the Town’s Comprehensive Plan of 2015 and other recent initiatives. These data elements were catalogued using the following categories:
• Existing Transportation Infrastructure & Physical Conditions
• Demographics & Socio Economic Characteristics
• Existing & Future Transportation Operating Conditions
• Pedestrian and Recreational Amenities
• Planned Transportation Improvements
• Municipal Zoning, Design & Construction Standards

The significant growth in population and businesses has not occurred in a uniform pattern within Victor or the Route 96 Corridor. The reality reported in the Plan is that the Route 96 Corridor is comprised of very distinct zones with unique needs, each of which requires customized solutions. Most non-residents when asked about Victor cite the retail portion of the Route 96 Corridor stretching from Eastview Mall to I-490 interchange 29. However, most are unaware of the significant number of technology and manufacturing firms clustered on the west side of Route 96 between Main Street Fishers and Victor Mendon Road Route 251. Although the Village, where Route 96 becomes Main Street, presently offers a dense, walkable environment, it is bookended by stretches of Route 96 that offer attractive commercial, residential, and mixed use development opportunities.

Appendix G of the Plan describes in detail the methodology relied upon to determine needs, including extensive public input via public meetings and a survey. The input received via the meetings and survey is presented in Appendices E and F of the Plan. Ultimately, the Plan identified distinct needs in five different segments of the Corridor (see the five segments depicted in the figure that follows).

Five Corridor Segments

(Figure above from Route 96 Transformative Corridor Strategic Infrastructure Plan, T.Y. Lin International, March 2018, p. 8)
Needs Identified in Five Corridor Segments

- **Eastview**
 - Retail development draws shoppers from as far away as Canada but is frequently afflicted with significant delay;
 - The delay is particularly acute on weekends and during the Holiday Season;
 - Traffic signals don’t adequately adapt to changing traffic patterns;
 - At the I-490 interchange, the 50 mph speed zone combined with weaving movement of southbound vehicles at I-490 creates safety issues; and,
 - Left turn movements onto Route 96 at Woodcliff Drive, Turk Hill Road, and High Street are difficult.

- **Main Street Fishers/Victor Mendon Road**
 - It can be difficult to turn safely turning onto Route 96 at the Omnitech Place intersection;
 - This is also a contributor to queuing and associated intersection delay at Main Street Fishers/Rowley Road intersection as more drivers use this since it is signalized;
 - There is poor connectivity to roads on east side of Route 96;
 - There is a lack of walkability and bikeability from hotels to restaurants and for workers at businesses; and,
 - The general aesthetics of roads is poor and could be improved.

- **Western Approach**
 - Where Route 96 narrows from five lanes to three lanes, southbound traffic backs up in afternoon/early-evening;
 - Cork, Dryer, and Rawson Roads are used as a means to circumvent delay on Route 96, thereby creating unwanted traffic in residential neighborhoods; and,
 - Walkability on west side of Route 96 is poor and should be improved to better serve businesses there and to also create a connection with the Village.

- **The Village**
 - Increasing congestion threatens the viability of businesses, but diverting traffic around the Village is not an option;
 - Traffic congestion is exacerbated by three traffic signals within one-quarter of a mile of each other (High Street, School Street, and Route 444/Maple Avenue);
 - Traffic congestion is exacerbated by large numbers of school buses at High Street;
 - Traffic congestion is exacerbated by pedestrian actuation at High Street;
 - Turning from Church Street onto Route 96 is problematic; and,
 - The sidewalks north of Town Hall are steep.

- **Eastern End**
 - Drivers regularly exceed posted speed limits, which are 45 mph from the Farmington town line to just south of Lynaugh Road and then 30 mph from Lynaugh Road through the Village;
 - The only signalized intersection on this segment is at Mertensia Road in Farmington, making turns onto Route 96 difficult (Lynaugh Road and McMahon Road are cited most often); and,
 - Anticipated additional development is expected to increase safety concerns.
Benefits of the Proposed Action

Traffic and Transportation Benefits Specific to Separate Components of the Proposed Action

Benefits of Plan Adoption

Although plan adoption, without further implementation, would not reduce traffic congestion, access to an agreed-upon and formally recognized set of solutions with the demonstrated capacity to make meaningful improvement would facilitate more timely and effective progress on solving this long-standing problem. The establishment of a formally adopted plan would also provide Town officials the information necessary to make effective decisions relative to realizing the community objective of reduced congestion via improved roadway capacity and revised patterns of vehicular movement. Issues and decisions relevant to this objective will likely continue to arise in multiple areas including, but not limited to: taxation, budgeting, finance, application for grants and other financial assistance, planning for capital improvements, resource-allocation, and, last but far from least, land use planning.

Benefits of Undertaking, Funding and/or Approving the Six High Priority Projects

• Project Number 1 – New Local Street along Ontario Central Railroad

Project Number 1 would relieve delay on Route 96 without bypassing the Village business district. The Project would also increase access to properties on the east/south side of the roadway.

• Project Number 2 – Route 96 3-Lane to 5-Lane Conversion

Project Number 2 would relieve delay on Route 96, which would decrease the number of drivers using Cork Road, Dryer Road, and Rawson Road as a cut through. This improvement would increase the Town's ability to consider more development options that would be possible with the current lane configuration in this segment of the Route 96 Corridor. Overall, this is a better use of the existing pavement. The Project would also reduce conflicts created by the merging of southbound traffic on Route 96 near Omnitech Place where the current lane reduction occurs.

This improvement would work directly in concert with the new Local Street along the Ontario Central Railroad (Project Number 1) to better distribute existing and projected traffic volumes, which would reduce delay on a corridor-wide basis.

• Project Number 3 – Route 251/Lane Road Connection

Project Number 3 would create a single intersection to replace two offset ones, improving connectivity across Route 96. The Project would also provide dedicated turning lanes at each leg of the intersection to address the most prominent turning movements.

• Project Number 4 – Omnitech Place/Willowbrook Road Connection

Project Number 4 would create a new east-west connection on Route 96. The new connection would relieve some of the congestion at the Route 96/Main Street Fishers/Rowley Road intersection and increase safety as some drivers will choose this intersection as an alternative because it provides another option for making a left turn onto Route 96 northbound via a traffic signal.
• Project Number 5 – Plastermill Road/Collett Road/Delray Drive Connection

Project Number 5 would provide travelers from the north seeking to access destinations on the eastern end of Route 96 direct access to Mertensia Road from Collett Road. Presently these drivers must use either McMahon Road or Route 332 and drivers have difficulty making left turns off of McMahon Road onto Route 96. The Project will improve safety as the intersection of Route 96 and Mertensia Road is signalized, providing for easier turns onto Route 96.

• Project Number 6 – Lane Road/Victor Egypt Road/Lynaugh Road Roundabout

Project Number 6 would make the roads at this intersection major access points to Route 96 at the Western Approach (Lane Road – see Project Number 3), the Village (Victor Egypt Road becomes Church Street), and the Eastern End (Lynaugh Road – see Project Number 1). Roundabouts have been proven to reduce the severity of crashes at intersections by lowering speeds. In addition, the speed limit is reduced from 55 mph on Victor Egypt Road to 25 mph where it becomes Church Street less than one half-mile south of the intersection.

Benefit of TD District Establishment

Should Town or Village funds be required in addition to funding from federal and state agencies, the establishment of a TD District would allow the costs of constructing some or all of the six High Priority Projects to be raised and financed by levying local assessments on a benefits-derived basis within a specific area. Following establishment of a TD District, financing could be obtained at a more favorable interest rate since there would be an ascertained source for repayment for the upfront costs of construction.

Traffic and Transportation Benefits of All Components of the Proposed Action Combined Analysis Accompanying the Plan

The multiple components of the proposed Action are intended to work in concert to reduce traffic congestion within the corridor.

Appendix H of the Plan (also appended to this statement as Appendix H) presents a fairly comprehensive evaluation (summarized below) of the proposed Action. As the evaluation confirms, the primary objective of the Plan is to decrease congestion and thereby also improve safety (rear end accidents accounted for half of all accidents along Route 96 per the Town’s Comprehensive Plan of 2015).

In an effort to quantify benefits, those developing the Plan also developed traffic models for the PM Peak Hour (“rush hour”) in a software application that is an industry standard, combining macroscopic analysis and microsimulation capabilities (Trafficware’s Synchro and SimTraffic, respectively). The traffic models were created utilizing existing and new traffic counts, travel times from INRIX, and projections of future volumes and speeds from the GTC Travel Demand Model. The recommended transportation projects were then evaluated and refined based on the outputs of the developed traffic models.

Three such models were developed for the Plan:
1. Current Year Model: The Current Year Model replicates current conditions with respect to traffic volumes and speeds using existing roadway configurations and locations and timing of traffic signals. It was calibrated to recent counts and travel time data to provide a base for the development of the other two models.

2. 2040 No-Build Model: The No-Build Model projects conditions in 2040 with respect to traffic volumes and speeds using existing roadway configurations, locations and timing of signals, and the addition of the programmed roundabout at Route 96 and Lynbaugh Road. This roundabout is expected to be built in 2019 and represents the only planned improvement in the Plan area.

3. 2040 Build Model: Projects conditions in 2040 with respect to traffic volumes and speeds using the various future roadway configurations and locations and timing of signals based on the addition of the programmed roundabout at Route 96 and Lynbaugh Road and the projects identified for evaluation.

Evaluation of the six recommended High Priority projects utilizing the foregoing models indicated that implementation of the six would result in an arterial Level of Service (LOS) along the Route 96 Corridor during the evening peak hour in 2040 of C for southbound traffic and of D for northbound traffic. Furthermore, as reported in Appendix H of the Plan, no intersections are projected to have a LOS worse than E in 2040 (see Table 3 below for a summary of the forecasts reported in Plan Appendix H).

As shown in the Table 3, the analysis reported in Appendix H of the Plan indicates the notable absence of any LOS F in the Future Build 2040 scenario as well as the transition from a Future No Build scenario with two intersections at LOS D, two at LOS E, and two at LOS F to a Build scenario in which two remain at LOS D, only one is at LOS E, and none are at LOS F. Among individual intersections, the High Street intersection in the Village, an oft-cited trouble spot, shows the most dramatic improvement, from a LOS E in the No Build scenario to a LOS A in the Build scenario. Although it is far less pronounced, the Main Street Fishers intersection, another oft-cited congestion point and the only LOS E remaining in the Build scenario, shows some improvement nonetheless, from a LOS F in the No Build scenario to a LOS E in the Build scenario. The Commerce Drive intersection alone is worse in the Build scenario than in the No Build (LOS C in No Build scenario and LOS D in the Build).

| Effect on Corridor Intersection Levels of Service (PM Peak) – From Plan Appendix H |
|---------------------------------|----------------|----------------|----------------|
| Intersection | Existing 2017 | Future No Build 2040 | Future Build 2040 |
| Church Street (unsignalized) | C | A | A |
| Moore Ave./Maple Ave. | C | C | C |
| School St. | B | B | |
| High St. | E | E | A |
| Railroad Road & Maple – NEW | | C | |
| Railroad Road & School – NEW (Roundabout) | A | | |
| Route 251 | A | E | |
| Route 251/Lane Road - NEW | | C | |
| Railroad Road – NEW (unsignalized) | B | | |
| Omnitech Pl./Willowbrook Rd. – NEW | | C | |
| Rowley Rd./Main Street Fishers | D | F | E |
| Benson Road (unsignalized) | A | A | A |
Effect on Corridor Intersection Levels of Service (PM Peak) – From Plan Appendix H

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing 2017</th>
<th>Future No Build 2040</th>
<th>Future Build 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-490 WB On-Ramp/Off-Ramp</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Commerce Dr.</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>High St.</td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>Cobblestone Ct.</td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>Turk Hill Rd.</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Commons Blvd.</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 250</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Woodcliff Dr.</td>
<td>F</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>I-490 Exit 28</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

Table 3

Additional Analysis Included in this Environmental Review.

Subsequent to publication of the Plan, further analyses were undertaken to support this environmental review, to allow a more direct comparison of the “Full Build” 2040 PM Peak scenario to the corresponding “No Build” scenario, and to develop a more detailed description of the benefits and impacts anticipated from the proposed Action. These subsequent analyses relied on the same traffic modeling software to calculate values such as the anticipated LOS, Total Signal Delay, and Average Speed anticipated in 2040 PM Peak as a consequence of the proposed Action compared to those expected in the absence of the Action. The Full Build 2040 traffic model created for the Plan was developed through an iterative process. Ideas provided through the aforementioned stakeholder process, at public meetings, field observations, and other recent initiatives were added and subtracted from the traffic model to ascertain their benefits. To ensure that residual elements of software modification not part of the six High Priority Projects were not erroneously included in the model, a new Full Build model was created using the No Build model as its base. The six High Priority Projects were incrementally added to the No Build model until the Full Build model was established. Only improvements included as a part of those six Project were included in the Full Build model. Traffic volume (re)distributions utilized in the Full Build 2040 model within the Plan were used in this new model.

The analyses completed during the environmental review provide forecasts of LOS, Total Delay, and Average Speed from both an Arterial and an Intersection perspective. Regarding these two perspectives, it should be noted that despite the use of identical terminology, the calculations are not intended to reflect the same traffic characteristics. Regarding the Arterial forecasts, these disregard non-signalized intersections, are directional, and are intended to assess the LOS, Delay and Average Speed experienced by motorists travelling through an arterial segment and not relying on intersections to turn from or onto intersecting roadways. The forecasts calculated from an Intersection perspective are the complement to those, and are intended to assess the LOS, Delay and Average Speed encountered by motorists who, rather than passing through an arterial segment, are instead relying on a given intersection to provide an opportunity to turn from or onto an intersecting roadway. Finally, in reviewing the Arterial and Intersection forecasts presented in the tables that follow, it may help to note...
that ensuring motorists an acceptable LOS, minimal delay, and efficient average speed from both arterial and intersection perspectives can be difficult, or even impossible. The primary obstacle to providing both involves the signalization of intersections. Whereas signals at intersections are useful to facilitate permissive turns via stops and breaks in the arterial flow and/or enable protected turns via arrows, arterial flow is instead impeded by intersection signalization and would typically be greatest in the complete absence of any signals. Competing demands for signal time also arise at signalized intersections from motorists intending to turn and those intending to travel through an arterial segment. In other words, as more time is allocated to one, less time is available to allocate to the other and, when there is insufficient time to accommodate all of the signal time demand, a conflict results. As the relative allocations of signal time are affected by demand, the addition of more traffic at an intersection, whether intending to turn or pass through, can easily manifest as additional delay to those with the opposite intent once the relevant allocations of signal time are revised.

Finally, in addition to the Arterial and Intersection forecasts described immediately above, the analyses completed as part of this review also forecast multiple measures of effectiveness and various performance measures. In addition to the summary information presented in the two tables that follow, the full results of these analyses of the effects of the proposed Action can be found in the following Appendices:

- Appendix J Intersection Levels of Service PM Peak No Build and Full Build (All Projects)
- Appendix K Arterial Level s of Service PM Peak No Build and Full Build (All Projects)
- Appendix L Detailed Measures of Effectiveness PM Peak No Build and Full Build (All Projects)
- Appendix M Performance PM Peak No Build and Full Build (All Projects)

Table 4, below, summarizes the results with respect to Arterial LOS, Delay and Average Speed within each of the five Corridor segments depicted in the foregoing Figure 15. With respect to Arterial LOS alone, Table 4 shows that the proposed Action, when compared to the No Action scenario, is expected to yield significant reductions in congestion for southbound and eastbound motorists within:

- The Overall Corridor (LOS D to C);
- The Village Segment (LOS C to B);
- The Western Approach Segment (LOS E to C); and,
- The Main Street Fishers/Victor Mendon Road Segment (LOS F to E).

Unfortunately, Table 4 also shows that the proposed Action would result in some additional arterial congestion and delay for northbound and westbound motorists within the Western Approach and Main Street Fishers/Victor Mendon Road segments of the Corridor during the PM Peak Hour. This has also been noted in the sections that follow entitled “Potential Significant Adverse Environmental Impacts “ and “Adverse Environmental Impacts that cannot be Avoided or Adequately Mitigated”. Although this degraded LOS may seem unexpected, two factors may serve as possible explanations. First, the Full Build scenario does add additional intersection signals compared to the No Build. Second, whereas Southbound and Eastbound traffic is very heavy during the PM Peak, Northbound and Westbound traffic is less so. Accordingly, the additional impediments to arterial flow resulting from the additional signals included in the Full Build scenario would be more obvious to Northbound and Westbound traffic that
would otherwise flow more freely and would be less obvious to Southbound and Westbound traffic as the signal impediments would be partly masked by the congestion already present at that hour of the day within the Southbound and Eastbound travel lanes.

<table>
<thead>
<tr>
<th>Approach and Corridor Segments</th>
<th>LOS</th>
<th>Total Signal Delay (sec)</th>
<th>Avg. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Build</td>
<td>Full Build</td>
<td>No Build</td>
</tr>
<tr>
<td>Southbound and Eastbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Village</td>
<td>C</td>
<td>B</td>
<td>94.1</td>
</tr>
<tr>
<td>Western Approach</td>
<td>E</td>
<td>C</td>
<td>171.3</td>
</tr>
<tr>
<td>Main St. Fishers/Victor Mendon Rd.</td>
<td>F</td>
<td>E</td>
<td>181.9</td>
</tr>
<tr>
<td>Eastview</td>
<td>C</td>
<td>C</td>
<td>161.1</td>
</tr>
<tr>
<td>Overall</td>
<td>D</td>
<td>C</td>
<td>608.4</td>
</tr>
<tr>
<td>Northbound and Westbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Village</td>
<td>C</td>
<td>C</td>
<td>43.5</td>
</tr>
<tr>
<td>Western Approach</td>
<td>A</td>
<td>C</td>
<td>12.5</td>
</tr>
<tr>
<td>Main St. Fishers/Victor Mendon Rd.</td>
<td>D</td>
<td>F</td>
<td>108.0</td>
</tr>
<tr>
<td>Eastview</td>
<td>D</td>
<td>D</td>
<td>207.2</td>
</tr>
<tr>
<td>Overall</td>
<td>C</td>
<td>C</td>
<td>371.2</td>
</tr>
</tbody>
</table>

Table 5, below, presents Intersection LOS, Delay and Average Speed for given intersections within each segment corridor. Beneath these entries, the corresponding Arterial LOS, Delay and Average Speed (from Table 4) for each segment have been added (in tint highlighted cells and italics) for comparison. However, to be clear, and as indicated above, the Arterial values that were presented in Table 4 and have been added to Table 5 for reference are not calculated from the intersection values shown in Table 5. For the intermediate location values used to calculate the Arterial LOS, Delay and Average Speeds for Corridor segments, see Appendix K.

Table 5 shows that the proposed Action is anticipated to yield significant reductions in arterial traffic congestion at the following intersections:

- Route 96/School Street (LOS C to A);
- Route 96/High Street (LOS D to B);
- Route 96/Route 251 (LOS E to C);
- Route 96/Omnitech Place (LOS F to C); and,
- Route 251/Rowley Road/Main Street Fishers (LOS remains F, but seconds of signal delay reduced from 113 to 81).

Unlike the arterial data presented in Table 4 relative to northbound or westbound travel, none of the intersections presented in Table 5 exhibit a significant increase in intersection traffic congestion or delay as a consequence of the proposed Action.
Effect on Intersection Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)

<table>
<thead>
<tr>
<th>Intersections within Given Corridor Segments</th>
<th>LOS</th>
<th>Total Delay (sec)</th>
<th>Avg. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Build</td>
<td>Full Build</td>
<td>No Build</td>
</tr>
<tr>
<td>EASTERN END</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/McMahon Road</td>
<td>A</td>
<td>A</td>
<td>2.0</td>
</tr>
<tr>
<td>Victor Egypt/Lynaugh/Lane: No Signal</td>
<td>A</td>
<td>-</td>
<td>8.7</td>
</tr>
<tr>
<td>Victor Egypt/Lynaugh/Lane: R’ndabout</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Route 96/Lynaugh</td>
<td>B</td>
<td>B</td>
<td>14.1</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>THE VILLAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Church Street</td>
<td>A</td>
<td>A</td>
<td>4.2</td>
</tr>
<tr>
<td>Route 96/Moore Ave/Maple Ave</td>
<td>C</td>
<td>C</td>
<td>23.7</td>
</tr>
<tr>
<td>Route 96/School Street</td>
<td>C</td>
<td>A</td>
<td>27.7</td>
</tr>
<tr>
<td>Route 96/High Street</td>
<td>D</td>
<td>B</td>
<td>48.2</td>
</tr>
<tr>
<td>New Local Street/Maple Ave</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>New Local Street/School Street</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>C</td>
<td>B</td>
<td>94.1</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>C</td>
<td>C</td>
<td>43.5</td>
</tr>
<tr>
<td>WESTERN APPROACH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Route 251: 3 leg</td>
<td>E</td>
<td>-</td>
<td>72.9</td>
</tr>
<tr>
<td>Route 96/Lane Road</td>
<td>A</td>
<td>-</td>
<td>8.3</td>
</tr>
<tr>
<td>Route 96/Route 251/Lane Road</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Route 96/Omnitech Pl: 3 leg, No Signal</td>
<td>F</td>
<td>-</td>
<td>71.0</td>
</tr>
<tr>
<td>Route 96/Omnitech/Willowbrook: Signal</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>E</td>
<td>C</td>
<td>171.3</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>A</td>
<td>C</td>
<td>12.5</td>
</tr>
<tr>
<td>MAIN ST. FISHERS/VICTOR MENDON ROAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Local Street/Route 251</td>
<td>-</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Route 251/Rowley/Main Street Fishers</td>
<td>F</td>
<td>F</td>
<td>113.5</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>F</td>
<td>E</td>
<td>181.9</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>D</td>
<td>F</td>
<td>108.0</td>
</tr>
<tr>
<td>EASTVIEW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/I-490 WB On-Ramp/Off-Ramp</td>
<td>C</td>
<td>C</td>
<td>24.3</td>
</tr>
<tr>
<td>Route 96/Commerce Drive</td>
<td>C</td>
<td>C</td>
<td>29.1</td>
</tr>
<tr>
<td>Route 96/High Street</td>
<td>D</td>
<td>D</td>
<td>41.4</td>
</tr>
<tr>
<td>Route 96/Cobblestone Court</td>
<td>C</td>
<td>C</td>
<td>20.9</td>
</tr>
<tr>
<td>Route 96/Turk Hill Road</td>
<td>C</td>
<td>C</td>
<td>29.7</td>
</tr>
<tr>
<td>Route 96/Commons Blvd</td>
<td>C</td>
<td>C</td>
<td>25.8</td>
</tr>
<tr>
<td>Route 96/Route 250</td>
<td>B</td>
<td>B</td>
<td>15.4</td>
</tr>
<tr>
<td>Route 96/Woodcliff Drive</td>
<td>F</td>
<td>F</td>
<td>131.5</td>
</tr>
<tr>
<td>Route 96/I-490 Exit 28</td>
<td>B</td>
<td>B</td>
<td>19.8</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>C</td>
<td>C</td>
<td>161.1</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>D</td>
<td>D</td>
<td>207.2</td>
</tr>
</tbody>
</table>

Table 5
Social and Economic Considerations Relative to Benefits of the Proposed Action

With respect to economic considerations, Appendix H to the Plan reported the results of an initial calculation, based on the comparative results of the Current Year Model and the Build 2040 Model, of the value of travel time savings (using a 7 percent net present value discount rate and U.S. Department of Transportation recommended hourly values of travel time savings in 2016 dollars per person-hour). The results of this analysis indicate that when vehicle operating cost savings, safety improvements, emissions reduction benefits, and property value increases resulting from the implementation of the projects are factored in, the implementation of the six high-priority projects will result in benefits that exceed costs. More specifically, this benefit cost analysis considered the value of travel time savings (VTTS) in the PM peak hour. The VTTS alone is projected to be between 15 and 22 percent of the total cost of the project through 2040 (including both initial construction and maintenance costs). Assuming half as much benefits realized in the AM peak hour would result in VTTS of between 22 and 33 percent of the total cost using net present values of seven percent and three percent respectively. This is also a conservative estimate of VTTS as it assumes all travel is passenger travel valued at $14.10/hour, the accepted blend of business and personal travel. That is, no commercial vehicle benefits are included, and these are higher than passenger travel. Additional expected benefits of the improvements (namely, vehicle operating cost savings; prevented injuries, fatalities, and property damage; emissions reduction benefits; and property value increases) are not projected. Some of these would presumably be more significant than others given the nature of the high priority projects and, in total, will likely result in benefits that exceed costs through 2040 including when discounted for the time value of money.

Finally, and less quantitatively, the Introductory Summary described how the segment of the NYS Route 96 corridor within the Town of Victor has been recognized by the Finger Lakes Economic Development Council as a “Transformative Corridor” - a critical component of the regional transportation system supporting job growth, increasing regional wealth, driving private sector investment, and reducing poverty. As described in that same section, the increasing traffic congestion within the Corridor reduces traffic safety, impedes the passage of visitors and commuters within the Town, diminishes the quality of life for residents, and threatens continued growth and economic development. That being so, the anticipated reduction in corridor traffic congestion reflected in the foregoing forecasts of 2040 LOS and other measures in the “Full Build” scenario would better facilitate and support (relative the “No Build” scenario) realization of the economic potential believed to now be present within the corridor.

Environmental Setting of Areas to Be Affected

Affected Regional and Corridor-wide Settings

Undertaking, Funding and/or Approval of the Six High Priority Projects

Among the regional environmental resources evaluated, the following figured most prominently (see EAF Part 1 in Appendix C as well as Appendix H to the Plan):

- Significant Natural Communities;
- Rare Plants and Animals;
- Threatened and Endangered Animals and Plants;
o State Regulated Freshwater Wetlands; and,
o Federal Estuarine, Marine, and Freshwater Wetlands.

With respect to the foregoing elements, it should be noted that two Threatened Animals could be present regionally in the Plan area as both the Northern Long-Eared Bat (Myotis septentrionalis) and the Bog Turtle (Clemmys muhlenbergii) are either known to or believed to occur in Ontario County. Regarding the presence of wetlands, streams or other surface water resources within the sites proposed for construction of the six Projects, this topic is described separately under each of the six headings that follow.

Regarding traffic conditions within the corridor as a whole, of sixteen intersections reviewed in the Plan, three presently have a LOS of D or worse (High Street in the Village, Rowley Road/Main Street Fishers, and Woodcliff Drive (see Table 6 below).

| Existing Corridor Intersection Levels of Service (PM Peak) |
|-------------------------------|-------------------|
| **Intersection** | **Existing (2017)** |
| Church Street (unsignalized) | C |
| Moore Ave./Maple Ave. | C |
| School St. | B |
| High St. | E |
| Route 251 | A |
| Rowley Rd./Main Street Fishers | D |
| Benson Road (unsignalized) | A |
| I-490 WB On-Ramp/Off-Ramp | A |
| Commerce Dr. | B |
| High St. | C |
| Cobblestone Ct. | C |
| Turk Hill Rd. | C |
| Commons Blvd. | B |
| Route 250 | B |
| Woodcliff Dr. | F |
| I-490 Exit 28 | B |

Table 6

Finally, the Introductory Summary described how the Finger Lakes Economic Development Council’s recognition of this segment of the NYS Route 96 corridor within the Town of Victor as a “Transformative Corridor” - a critical component of the regional transportation system supporting job growth, increasing regional wealth, driving private sector investment, and reducing poverty. Unfortunately, the history of increasing traffic congestion within the Corridor that reduces traffic safety and impedes the passage of visitors and commuters within the Town also diminishes the quality of life for residents and is believed to already be suppressing growth and economic development.
Affected Settings Specific to Given Sites or Action Components

Plan Adoption

Although areas would be affected by the implementation activities of constructing the six High Priority Projects, plan adoption alone would affect none directly as it involves no physical activity. The environmental settings of the areas potentially affected by construction of the six recommended projects are described separately immediately below.

The Six High Priority Projects

- Project Number 1 – New Local Street along Ontario Central Railroad

Project Number 1 involves the development of a new local street, more than two miles in length, along the existing Ontario Central Railroad ROW, from a proposed western terminus near Route 251 to a proposed eastern terminus near either Lynbaugh Road or Plastermill Road (see Figure 16). In Figure 16, the present alignment of the railroad ROW is recognizable parallel to and just south of Route 96 (more detailed views of the proposed alignment can be found in Figures 3, 4 and 5). In the upper left (northwest) corner of the figure, a yellow arrow indicates the approximate location of the proposed western terminus near Route 251 proposed for the new street and two yellow arrows in the lower right (southeast) corner indicate the two alternative locations proposed for the eastern terminus.

The profile of the affected segment of railroad ROW is fairly uniform at present. In addition, a preliminary assessment has revealed that, unlike many railroad ROW, very little (perhaps none) of the ROW that would be utilized by the project is elevated relative to the surrounding terrain. As presently developed, and although it is unpaved, the existing railroad ROW is believed to be largely impervious to water infiltration.

The segment of the ROW that the railroad would necessarily abandon prior to construction of the new street has been characterized as presently somewhat “under-utilized”. However, this does not negate the fact that it is presently utilized to provide service nonetheless.

The existing ROW width within the affected segment is believed to be sufficient to accommodate future installation of a replacement track, offset to one side or the other, as well as construction of the proposed local street and associated sidewalk.

Other than at intermediate intersections (i.e., at School Street and Maple Avenue), no streets or roads presently exist along the proposed alignment of more than two miles where the new local street would be developed. Likewise, other than at those intermediate intersections, no street-lighting presently exists within the immediate area where the new street would be constructed.

The railroad ROW that Project Number 1 would utilize presently traverses a number of land use districts and also serves, in a number of instances, as the boundary between somewhat different districts. Beginning at Route 251 and proceeding to Plastermill Road, the ROW presently traverses or adjoins, in sequence, the following land use or zoning districts: Town Light Industrial; Town Commercial-Light Industrial; Town Multiple Dwelling; Town Light Industrial; Village Industrial; Village...
As can be seen in Figure 16, much of the segment of the railroad ROW that lies between Route 251, to the northwest, and School Street, to the southeast, is adjoined by a large wetland complex that includes both NYS DEC Freshwater Wetlands as well as potential federal wetlands regulated by the US ACOE that are mapped on the federal National Wetland Inventory (“NWI”). It is believed that these wetlands are largely the consequence of the impoundment formed by construction of the adjoining railroad grade. The wetland complex is immediately adjacent to the railroad ROW, or nearly so, for a distance of more than 4,200 feet, from a point approximately 1,525 feet southeast of Route 251 to a point approximately 1,225 feet northwest of School Street. Although none of the ROW is believed to actually be within a wetland, segments that are within 100 feet of a NYS DEC Freshwater Wetland boundary would be within 100-foot wide wetland adjacent area (or buffer) regulated by NYS DEC.

Several intermittent streams are also present within the wetland complex that adjoins the segment of the railroad ROW that would be utilized for development of the new local street. The railroad ROW also crosses another intermittent stream northwest of the wetlands at a point approximately 1,000 feet southeast of Route 251. The perennial stream known as Great Brook courses south of and somewhat parallel to the railroad ROW beginning at a point just northwest of Maple Avenue and an intermittent stream tributary to Great Brook crosses the railroad ROW just southeast of Maple Avenue. The railroad ROW then crosses Great Brook to the southeast at the same location as does Route 96.

- Project Number 2 – Route 96 3-Lane to 5-Lane Conversion

Project Number 2 would reconfigure the existing mile-long segment of Route 96 from just south of Omnitech Place to Route 251 from one travel lane in each direction with a center turning lane to two travel lanes in each direction and a center turning lane (see Figure 17). The present alignment of Route 96 is recognizable in Figure 17 (also see Figure 7 for a more detailed view of the proposed alignment). A yellow arrow in the upper left (northwest) quadrant of Figure 17 indicates the approximate location just south of Omnitech Place where the improvement would commence and a second yellow arrow in the lower right (southeast) quadrant indicates the approximate location at Route 251 where the improvement would terminate.

With very few exceptions, it is anticipated that the present Route 96 ROW would accommodate the proposed widening with little acquisition of additional land. Although it is likely obvious from both the Plan and this EIS, it should be noted that the segment of Route 96 proposed for widening in this project is very heavily travelled by vehicles, particularly during peak morning and evening commutes. Presently there is very little pedestrian or bicycle travel within this segment.

As illustrated in Figure 17, two intermittent streams presently cross Route 96 within this segment, one near and just southeast of the intersection with Omnitech Place and a second near and just northwest of the intersection with Route 251. In addition, a large wetland complex is located southwest of, and in some locations immediately adjacent to, this segment of Route 96. The
segment within which the wetlands approach Route 96 most closely is located between points 875 feet and 1,350 feet southeast of the Route 96/Omnitech Place intersection.

- **Project Number 3 – Route 251/Lane Road Connection**

Project Number 3 involves development of a new connection between Route 251 and Lane Road (see Figure 18). The location proposed for the new connection, including the present intersections of both Route 251 and Lane Road with Route 96 can be seen in Figure 18. A yellow arrow in the figure at the Route 251/Route 96 intersection indicates the approximate location where the new connection would intersect Route 96 immediately opposite Route 251 and a second yellow arrow near Lane Road indicates the approximate location where the new connection would depart from the existing Lane Road alignment (a more detailed plan of the new connection can be found in Figure 9).

As illustrated in Figure 18, an intermittent stream presently crosses Route 96 just northwest of the Route 251 intersection. The crossing is at least 250’ from the Route 96/Route 251 intersection, well beyond the area anticipated to be disturbed by development of the new connection.

The land in this area northeast of Route 96 is higher in elevation than is the highway (for a more detailed depiction of the topography, see Figure 19). Although the anticipated alignment of the new connection would be only 1,000 feet or so in length, the change in elevation along that anticipated alignment is somewhat significant (see the topographic contours included in Figure 18). Specifically, the elevation of Lane Road at the anticipated point of departure is approximately 40 feet higher than the elevation of the Route 251/Route 96 intersection where the proposed connection would terminate. Although the average grade of the connection would be only 4 percent (40 feet over 1,000 feet) the final profile will also be determined by existing topography.

Much of the land over which the newly proposed connection would pass is now in private ownership and the new connection would necessarily construct a new roadway, possibly with street lighting, where none now exists.

- **Project Number 4 – Omnitech Place/Willowbrook Road Connection**

Project Number 4 would develop a connection between Omnitech Place and Willowbrook Road within the area depicted in Figure 20. Yellow arrows in the figure indicate the approximate locations between which the new connection would be constructed (a more detailed plan of the proposed alignment of the new connection can be found in Figure 11).

As illustrated in Figure 20, an intermittent stream is located south of and immediately adjacent to Willowbrook Road east of Rowley Road. Although this stream crosses Route 96 well south of the Omnitech Place intersection with Route 96, it crosses Rowley Road immediately south of and adjacent to the Willowbrook Road/Rowley Road intersection.

As the topographic contours in Figures 20 and 21 illustrate, the area proposed for construction of the new connection is not level. In fact, although the anticipated alignment is only 1,000 feet or so in length, the change in elevation along that anticipated alignment is approximately 20 feet.
Although the average grade of the connection would be only 2 percent (20 feet over 1,000 feet) the final profile will also be determined by existing topography.

Much of the land over which the newly proposed connection would pass is now in private ownership and the new connection would necessarily construct a new roadway, possibly with street lighting, where none now exists.

- **Project Number 5 – Plastermill Road/Collett Road/Delray Drive Connection**

 Project Number 5 would develop a connection between Plastermill Road/Collett Road and Delray Drive (see Figure 22 relative to the environmental setting and Figure 13 for a detailed depiction of the anticipated extent and alignment). Yellow arrows in Figure 22 indicate the approximate locations where the new connection would extend from the existing terminus of Collett Road and where it would intersect Plastermill Road immediately opposite the existing Delray Drive intersection.

 There are no streams or wetlands in the immediate vicinity of the area anticipated to be affected by the project (the nearest stream courses north of Plastermill Road and crosses Delray Drive approximately 400 feet north of the intersection to which Collett Road would be extended).

 The anticipated alignment is only 250 feet or so in length and the change in elevation along that anticipated alignment is approximately 10 feet (for a more detailed depiction of the topography, see Figure 23). Although the average grade of the connection would therefore be only 4 percent (10 feet over 250 feet) the final profile will also be determined by the elevations of the existing roads as well as the need to cross the existing railroad ROW at-grade within the new road segment.

 Much of the land over which the newly proposed connection would pass is now in private ownership and the new connection would necessarily construct a new roadway, possibly with street lighting, where none now exists.

- **Project Number 6 – Lane Road/Victor Egypt Road/Lynaugh Road Roundabout**

 Figure 24 illustrates the environmental setting in the area within which the proposed Lane Road/Victor Egypt Road/Lynaugh Road Roundabout would be constructed. A yellow arrow included in the Figure indicates the existing intersection that would be modified by the roundabout. A more detailed depiction of the anticipated limits of the roundabout can be found in Figure 15.

 As can be seen in Figure 24, an intermittent stream crosses both Lane Road and Victor-Egypt Road very near and immediately south of the existing Lane Road/Victor Egypt Road/Lynaugh Road intersection.

District Establishment

Although the proposed establishment of a TD District has no potential to affect a physical environmental setting, it could affect the fiscal setting. To fund roadway improvements, both the Town and Village presently have recourse only to funds awarded from other agencies and/or revenue derived from the
local imposition of municipality-wide Ad Valorem taxes. Therefore, in the present fiscal setting, even should Town or Village funds be required in addition to funding from federal and state agencies for construction of one or more of the six Projects, the Town and/or Village would only be able to raise funds and finance construction by utilizing local assessments levied on an Ad Valorem basis throughout the municipality.

Potential Significant Adverse Environmental Impacts

This section describes potential adverse environmental impacts of significance that could result from the Action. Although the full scope of the Action is considered, including both formal Plan adoption and establishment of a TD District, all but one of the identified potential impacts of significance are associated with construction of one or more of the six High Priority Projects. The single potential impact of significance identified in association with other aspects of the proposed Action is a Fiscal impact associated with the proposed establishment of a TD District. Finally, although previous sections describing both the Action and the environmental setting have been organized by Action component, this section is organized instead according to the environmental resource potentially impacted and the type of potential impact.

Impact on Land (Full EAF Part 2 Item No. 1)

Excavation and removal of natural material.

Some of the six High Priority Projects are associated with a potential need to remove natural material. This potential is described in the paragraphs that follow. However, and although the NYS DEC form for the FEAF classifies the removal of natural material as a potential impact on land, in this instance the primary potential impact of significance is an impact to Transportation as a consequence of the potential need to then transport removed material utilizing roadways already suffering from traffic congestion and that would, at that time, likely be subject as well to the effects of construction-related closures and detours. For that reason, although the details relative to removal of material are presented here, the consequent potential impacts are formally listed below in the section entitled “Impact on Transportation”.

Although the FEAF (Part 2, Item No. 1, and Part 3, see Appendices F & G) indicated that Project Numbers 1, 3, 4 and 5 were all associated with the potential need for significant cut and fill activities that could lead to the excavation and removal of 1,000 tons or more of natural material, it has since been determined that the potential need for cut and fill associated with Project Number 1 is actually very minimal. This conclusion rests on two factors: first, the railroad ROW is approximately 96 feet in width at present and should require no increases in width to accommodate Project Number 1 and, second, the surface of the existing railroad ROW is *not* elevated above the surrounding terrain to any significant degree and should accommodate the improvements proposed in Project Number 1 with very little modification to the surface elevation. As the FEAF had also assumed the quantities of material to be potentially removed were largest in Project Number 1 (given its length of more than two miles), the discovery that Project Number 1 should instead involve only minimal removal means that the quantities of material potentially requiring removal that referenced in the EAF were greatly overestimated. As
summarized in the paragraphs that follow, some potential need for removal of natural material does remain nonetheless when considering Projects Number 3, 4 and 5.

With regard to Project Number 3, which involves development of a connection between Route 251 and Lane Road, although the anticipated alignment is only 1,000 feet or so in length, the change in elevation along that anticipated alignment is significant. Specifically, the elevation of Lane Road at the anticipated point of departure is approximately 40 feet higher than the elevation of the Route 251/Route 96 intersection where the proposed connection would terminate. Although the average grade of the connection would be only 4 percent (40 feet over 1,000 feet) the final profile will also be determined by existing topography. Accordingly, whether the required cuts and fills would balance remains uncertain. Furthermore, as most of the land over which the connection would pass is privately held, acquisition will be necessary and whether sufficient on-site locations to either borrow or deposit soil would be available remains uncertain. For those reasons, the potential need for removal and transport of quantities of soil to or from the construction site remains.

For example, and only in order to gauge the potential impact in an extreme scenario, the removal of natural material to a depth of 5 feet over one-half the surface of a proposed ROW 1,000 feet in length and 60 feet in width would generate 150,000 cubic feet of material, equivalent to approximately 5,500 cubic yards which, in turn, would likely equate to more than 500 truckloads. Given the preference to balance cut and fill on-site, the removal of so large a quantity in this instance is unlikely. However, given the location, transport of any natural material from the site would nonetheless likely involve transport (and turning movements) on Route 96 and/or Route 251.

Project Number 4 involves development of a connection between Omnitech Place and Willowbrook Road. Although the anticipated alignment is only 1,000 feet or so in length, the change in elevation along that anticipated alignment is approximately 20 feet. Although the average grade of the connection would be only 2 percent (20 feet over 1,000 feet) the final profile will also be determined by existing topography. That being so, whether the required cuts and fills would balance remains uncertain. Furthermore, as most of the land over which the connection would pass is privately held, acquisition will be necessary and whether sufficient on-site locations to either borrow or deposit soil would be available remains uncertain. For those reasons, the potential need for removal and transport of quantities of soil to or from the construction site remains.

The hypothetical example given above relative to Project Number 3 in an effort to gauge the potential impact in an extreme scenario is equally applicable to Project Number 4. Also, as with Project Number 3, although the removal of so large a quantity in this instance is unlikely, any transport of natural material from the site would nonetheless likely involve transport (and turning movements) on Route 96 given the location.

Project Number 5 involves development of a connection between Plastermill Road/Collett Road and Delray Drive. The anticipated alignment is only 250 feet or so in length and the change in elevation along that anticipated alignment is approximately 10 feet. Although the average grade of the connection would therefore be only 4 percent (10 feet over 250 feet) the final profile will also be determined by the elevations of the existing roads as well as the need to cross the existing railroad ROW.
at-grade within the new road segment. As with the other connections referenced above, much of the land over which the connection would pass is privately held and will require acquisition. Accordingly, whether sufficient on-site locations to either borrow or deposit soil would be available remains uncertain. For those reasons, the potential need for transport of natural material to or from the construction site remains.

As the connection proposed in Project Number 5 is only 250 feet in length, the hypothetical example give above relative to Project Number 3 (1,000 feet in length) in an effort to gauge the potential impact in an extreme scenario is only marginally applicable to Project Number 3. However, as with Projects 3 and 4, any transport of natural material from the site would nonetheless likely involve transport (and turning movements) on Route 96 given the location.

Construction that would continue for more than one year or in multiple phases.
The proposed Action includes six road construction projects with a combined length of almost 4 miles and a combined area of disturbance estimated in the FEAF at nearly 30 acres. On their own, either of the two most extensive projects (Project Number 1, a new local street along the Ontario Central Railroad, and Project Number 2, the conversion of a mile-long segment of Route 96 from 3-lanes to 5-lanes) would likely require more than one year and/or multiple phases to complete. Furthermore, the fact that each of the six separate projects included in the proposed Action is associated with different approval and permit requirements, that each features a different array of potential funding sources, and that each poses unique logistical considerations, not to mention the potential for unacceptable cumulative construction impacts should some of the construction periods coincide, make it a certainty that the six will be undertaken somewhat separately in an as-yet-to-be-determined sequence. That being so, construction on one or another of the projects will likely continue for years and the proposed Action, as a whole, will likely involve a minimum of six phases and possibly more. Thus, and although the resulting impacts would eventually cease, the potential for temporary disruption and interference with motorists, bicyclists, pedestrians and properties near the various construction sites will be great. This is noted as well as an Impact on Transportation under the sub-heading “Temporary traffic detours and/or traffic delays as a consequence of construction”.

Impacts on Surface Water (Full EAF Part 2 Item No. 3)

Construction within or adjoining a freshwater wetland or in the bed or banks of any other water body.
Project Number 1 involves the development of a new local street, more than two miles in length, along the existing Ontario Central Railroad ROW. Much of the segment of the railroad ROW that lies between Route 251, to the north, and School Street, to the south, is adjoined by a large wetland complex that includes both NYS DEC Freshwater wetlands as well as potential wetlands mapped on the federal National Wetland Inventory. The wetland complex is immediately adjacent to the railroad ROW, or nearly so, for a distance of more than 4,200 feet, from a point approximately 1,525’ south of Route 251 to a point approximately 1,225 feet north of School Street.

As indicated in the FEAF (Part 2, Item No. 1, and Part 3, see Appendices F & G), the profile of the ROW affected by Project Number 1 is presently fairly uniform. However, the FEAF incorrectly indicated that
there are segments where it is elevated relative to the surrounding terrain and that there may be areas where the present developed width would be insufficient to accommodate the proposed local street. The FEAF then concluded that the need for significant cut and/or fill to either modify the ROW profile or widen the ROW could be encountered. In fact, the railroad ROW is approximately 96 feet in width at present and should require no increases in width to accommodate Project Number 1. Furthermore, the surface of the existing railroad ROW is not elevated above the surrounding terrain to any significant degree and should accommodate the improvements proposed in Project Number 1 with very little modification to the surface elevation. That being so, the potential risk for impacts to the wetlands adjoining the segment of the railroad ROW affected by Project Number 1 was greatly overstated in the FEAF. In fact, the risk for wetland impacts is actually minimal, although a permit from NYS DEC for work within the 100-foot wide wetland adjacent area or buffer will likely be required and there could be a need for some incidental fill within a federal NWI wetland.

Several of the proposed projects also include some potential impacts to streams. Regarding Project Number 1, several intermittent streams are present within the wetland complex described above that adjoins the segment of the railroad ROW that would be utilized by the new local street along the Ontario Central Railroad. The railroad ROW also crosses another intermittent stream north of the wetlands at a point approximately 1,000 feet south of Route 251. The perennial stream known as Great Brook courses south of the somewhat parallel to the railroad ROW beginning at a point just west of Maple Avenue and an intermittent stream tributary to Great Brook crosses the railroad ROW just east of Maple Avenue. The railroad ROW then crosses Great Brook to the east at the same location as does Route 96. However, only if Project Number 1 required some reconstruction or expansion of the developed portions of the railroad ROW, would there be potential for and significant stream impacts within the adjacent wetland or at those existing stream crossings.

With respect to the other projects, Route 96 crosses another intermittent stream at a point just north of the intersection with Route 251. Project Number 2, the conversion of a mile-long segment of Route 96 from 3-lanes to 5-lanes, could impact this stream crossing.

Another intermittent stream is located south of and immediately adjacent to Willowbrook Road east of Rowley Road. This stream is crossed by Rowley Road immediately south of the Willowbrook Road/Rowley Road intersection. Although it is somewhat unlikely, there remains some risk that Project 4, the development of an Omnitech Place/Willowbrook Road connection, could impact this stream.

Finally, both Lane Road and Victor-Egypt Road cross an intermittent stream very near and immediately south of the existing Lane Road/Victor Egypt Road/Lynaugh Road intersection. Project Number 6, which would construct a Lane Road/Victor Egypt Road/Lynaugh Road roundabout in this location, would likely impact this stream crossing.

Impact on Transportation (Full EAF Part 2 Item No. 13)

Transport of natural material removed from construction sites
As described in the foregoing section describing Impacts to Land under the sub-heading “Excavation and removal of natural material”, some of the six High Priority Projects are associated with a potential need to remove natural material. As NYS DEC forms classify the removal of natural material as a potential
impact to land, the details of that potential need are described in the foregoing section entitled “Impacts to Land” rather than here. However, in this instance the primary potential impact of significance associated with the need to removed natural materials is actually an impact to Transportation as a consequence of the potential need to then transport removed material utilizing roadways already suffering from traffic congestion and that would likely then be subject to the effects of construction-related closures and detours as well. As described in more detail in the discussion of “Impacts to Land“, the potential need for removal and transport of some natural material remains with Project Numbers 3, 4 and 5.

Regarding Project Number 3, the “Impacts to Land” description estimated, as an absolute and somewhat unlikely maximum, the potential removal of 150,000 cubic feet of material, equivalent to approximately 5,500 cubic yards. The discussion noted that this volume was potentially equivalent to more than 500 truckloads. Given the location, transport of natural material from the site would likely involve transport (and turning movements) on Route 96 and/or Route 251. Although the resulting impact would be temporary, given the potential for the number of truck trips to be as many as 500 and the anticipation that additional construction-related roadway limitations would likely be in place, the disruption and resulting impact to motorists, bicyclists, pedestrians and properties along the transport routes could therefore be considerable.

The quantities of material to be removed described above as absolute and somewhat unlikely maximums relative to Project Number 3 (i.e., 5,500 cubic yards, potentially equivalent to more than 500 truckloads) are equally applicable to Project Number 4. Any transport of natural material from the site would likely involve transport (and turning movements) on Route 96 given the location. As with Project Number 3, although the resulting impact would be temporary, given the potential for the number of truck trips to be as many as 500 and the expectation that additional construction-related limitations on roadways would likely be in place, the disruption and resulting impact to motorists, bicyclists, pedestrians and properties along the transport routes could therefore be considerable.

The connection proposed in Project Number 5 is only one-fourth the length of those proposed in Project Numbers 3 and 4 and the terrain is much more level. Accordingly, the quantities of material to be removed described above as absolute and somewhat unlikely maximums relative to those two Projects is inapplicable to Project Number 5. The dimensions suggest a reduction to at least one-fourth or possibly to one-eighth the values presented for Projects 3 and 4. Accordingly, this statement uses 690 to 1,375 cubic yards (potentially equivalent to more than 63 to 125 truckloads) as best-case and worst-case absolute and somewhat unlikely maximums relative to Project Number 5. Given the location, any transport of natural material from the site would likely involve transport (and turning movements) on Route 96. As with the others, although the resulting impact would be temporary, given the expectation that additional construction-related limitations would likely be in place, and despite the lower number of expected truck trips compared to the other two Projects, the disruption and resulting impact to motorists, bicyclists, pedestrians and properties along the transport routes could be considerable nonetheless.
Alteration to the present pattern of movement of people or goods – motor vehicles.

The underlying purpose of the proposed Action is to reduce traffic congestion by improving roadway capacity as well as by altering the present pattern of vehicular movement of both people and goods. Although all of the projects have some potential to alter such patterns, Project Numbers 1 (a new local street along the Ontario Central Railroad), 3 (development of a Route 251/Lane Road connection), 4 (development of an Omnitech Place/Willowbrook Road connection), and 5 (development of a Plastermill Road/Collett Road/Delray Drive connection) have the most potential in this regard. As the anticipated impacts will be primarily positive, it is hoped that they will be as significant and large as possible.

Although alteration of the present pattern of movement, primarily of motor vehicles, to a more satisfactory pattern is an important objective of the Action, possible negative aspects of the anticipated pattern changes cannot be ignored. In this instance, as described in more detail in Table 4 and the accompanying summary presented in the foregoing section entitled “Traffic and Transportation Benefits of All Components of the Proposed Action Combined”, during the 2040 PM Peak Hour the proposed Action would result in some additional arterial congestion and delay for northbound and westbound motorists within the Western Approach (LOS A to C) and Main Street Fishers/Victor Mendon Road (LOS D to F) segments of the arterial Corridor. As also described in that foregoing section, this impact is likely the result, at least in part, from the Action’s proposed installation of additional traffic signals intended to improve or maintain acceptable LOS at intersections.

Alteration to the present pattern of movement of people or goods – railroad.

Project Number 1 (a new local street along the Ontario Central Railroad) would also require abandonment of the railroad’s present use of a segment of the existing ROW from a western terminus near Route 251 to an eastern terminus near either Lynaugh Road or Plastermill Road. As this segment is currently in use, the abandonment would obviously lead to some alteration in the movement of goods. Although this impact may not rise to the level of moderate to large on a regional basis, the local impact to certain operations could be significant. It should be noted that the ROW segment affected by the Project is believed to be wide enough to accommodate the proposed new street as well as realigned tracks that could continue to provide rail service in the future. This potential is described in more detail below in the section entitled “Mitigation Measures”.

Temporary traffic detours and/or traffic delays as a consequence of construction.

As described above under the topic “Impact to Land”, the proposed Action includes six road construction projects with a combined length of almost 4 miles and a combined area of disturbance estimated at nearly 30 acres. As each of the six features different approval and permit requirements, different arrays of potential funding sources, and unique logistical considerations, not to mention the potential for unacceptable cumulative construction impacts were the construction periods of each to coincide, it is very likely that the six will be undertaken somewhat separately. As was stated above, construction on one or another of the projects will therefore likely continue for years and the proposed Action, as a whole, will likely involve a minimum of six phases and possibly more. Thus, and although the resulting impacts would eventually cease, the potential for temporary, but ongoing, disruption and interference with motorists, bicyclists, pedestrians as well as ongoing traffic delays and detours will be great.
Impact on Noise, Odor and Light (Full EAF Part 2 Item No. 15)

Temporary increases in noise, odors, dust and outdoor lighting from construction.
The extensive and protracted nature of construction activities involved in the proposed Action have been described above under the topic “Impact to Land” and in the immediately topic “Impact on Transportation”. This construction activity will result in typical, and temporary, impacts involving noise, odors (from construction equipment), and dust. There is also some potential for nighttime construction in order to reduce morning and afternoon traffic impacts that would require temporary nighttime illumination of construction sites. Although these temporary impacts may be considered “typical” they may persist at one location or another for some time nonetheless.

Installation of new road lighting.
The proposed Action includes several instances of new roadway development where none presently exist. These include Project Numbers 1 (a new local street along the Ontario Central Railroad), 3 (development of a Route 251/Lane Road connection), 4 (development of an Omnitech Place/Willowbrook Road connection), and 5 (development of a Plastermill Road/Collett Road/Delray Drive connection). Although the design of these projects is only conceptual at this point, it is likely that some or all of these will include the installation of street lights where none now exist.

Consistency with Community Plans (Full EAF Part 2 Item No. 17)

Land use components may be different from, or in sharp contrast to, current surrounding land use patterns.

Proposed action is inconsistent with local land use plans or zoning regulations.

Induction of secondary development impacts (e.g., residential or commercial development not included in the proposed action).

The proposed Action includes multiple projects that would construct or extend roadways where none now exist. Among these, Project Number 1 (a new local street along the Ontario Central Railroad ROW) has the most potential to support land use components different from current patterns, to be inconsistent with present zoning regulations, and/or to induce secondary development impacts, including growth.

As described in the summary of the environmental setting, the railroad ROW that Project Number 1 would utilize presently traverses a number of land use districts and also serves, in a number of instances, as the boundary between somewhat different districts. Beginning at Route 251 and proceeding to Plastermill Road, the ROW presently traverses or adjoins, in sequence, the following land use or zoning districts: Town Light Industrial; Town Commercial-Light Industrial; Town Multiple Dwelling; Town Light Industrial; Village Industrial; Village Business; Village Multiple Resident; Village Business; Village R-1 One Family Residential; Town Multiple Dwelling; and, Town Residential-2.

Much like many property rear lot-lines, this segment of the railroad ROW has been functional as a boundary between adjoining and potentially dissimilar land use districts because it has provided no
frontage or points of access and has been untraveled by motorists, cyclists or pedestrians. That will change when a new local street occupies the ROW. The presence of a new local street travelled by those in the community and providing frontage and access to adjacent properties will bring significant potential for conflict and difficult transitions between neighboring dissimilar districts. The persistence of multiple, dissimilar use intensities and districts encountered along the thoroughfare (industrial, commercial, business, multiple residential and single family residential) will likely become problematic.

Furthermore, given the proximity to the existing Route 96 commercial uses as well as its role as an alternative to travel on Route 96 and as a commuter route, construction of the new street will likely generate significant interest in commercial or business development along the new frontage despite the present industrial and residential designations. The persistence of dissimilar zoning designations along the new street with very little to serve as effective transition zones would likely become progressively more at odds with what will likely become a much more uniform pattern of uses along the new street.

Regarding development of new road segments where none presently exist and associated changes in land use or conflict with existing land use districts, Project Numbers 3 (development of a Route 251/Lane Road connection), 4 (development of an Omnitech Place/Willowbrook Road connection), and 5 (development of a Plastermill Road/Collett Road/Delray Drive connection) would also extend existing roadways into new locations. With respect to the Route 251/Lane Road connection, although Lane Road is generally designated for residential uses in this vicinity, it presently transitions to both Commercial-Light Industrial and Commercial designations as it approaches Route 96. Accordingly, and although some adjustment to the Residential/Commercial-Light Industrial boundary presently located north of Lane Road could be indicated, there is little contrast and the potential for significant adverse impacts is low. Regarding the Omnitech Place/Willowbrook Road connection, the area is presently a mix of Commercial, Commercial-Light Industrial, and Light Industrial. That being so, and although some zoning changes could be beneficial, the contrasts are minimal and the potential for significant adverse impacts is also low. Finally, the Plastermill Road/Collett Road/Delray Drive connection would be constructed within an area now designated for a variety of residential uses where there is little contrast and the potential for significant adverse impacts is similarly low.

Finally, regarding growth, from a community-wide perspective, the Action is intended to reduce traffic congestion which is believed to presently be impeding economic development. That being so, it is conceivable that relieving some of that congestion could facilitate emergence of growth that would otherwise be manifesting presently as a consequence of other forces already at play were it not for the suppressing influence of traffic congestion. Accordingly, reducing traffic congestion via the proposed Action could lead indirectly to increased growth as the associated suppressing influence is also reduced. If so, this would actually represent an intended consequence and benefit of the Action rather than an adverse environmental impact.

From a more site-specific perspective, Project Number 1, the development of a new local street where none now exists along the Ontario Central Railroad, would open up to development land that would then front on the new street and would certainly induce growth within that two-mile segment bordering the new street, at the very least. As reducing impediments to economic development is an objective of the Action, it would be inaccurate to characterize the indirect induction of additional growth alone
through the reduction of impediments as an adverse impact. The greatest risk for impact as a result of this anticipated growth is the potential for inconsistencies with existing land use patterns and districts. This potential impact has already been identified and described earlier in this same section.

One instance of potential growth induction that would not be a result of relief from suppressing influences involves the development of a new street in Project Number 1A. As already noted in this section, construction of the new street will likely generate significant interest in commercial or business development along the new frontage given the proximity to the existing Route 96 commercial uses and its role as an alternative to travel on Route 96 and as a commuter route. There is some potential for new development on this new road to increase traffic were it to function as a destination drawing to the area visitors coming specifically to visit the new establishments whereas they presently would not do so, and would not in 2040 were the new street not to be developed. Although this potential impact is not considered severe, or even very significant, it is important to note that this potential effect is not reflected in the traffic models presented herein as they only redistribute the same anticipated level of future traffic volume in both the No Build and Full Build scenarios. The potential for there to be more traffic in the Full Build scenario than in the No Build scenario solely as a result of the Action itself has not been accounted for in the traffic, LOS and other forecasts reported in this review.

Fiscal Impact
Presently, should Town or Village funds be required in addition to that available from federal and state agencies for construction of one or more of the six Projects, the Town and/or Village would only be able to raise funds and finance construction by utilizing local assessments levied uniformly throughout the municipality on an ad valorem basis (effectively, and typically described as, a taxation rate of a fixed amount annually per 1,000 dollars of taxable assessed value). That would change were a TD District to be established as proposed in the Action.

It has been suggested, and this review assumes, that the TD District would not include the entire municipality and would instead be defined to be coincident with the existing Route 96/Route 251 Overlay District presently delineated on the Town Zoning Map, perhaps augmented with a corresponding district within the Village. Establishment of such a TD District would mean that properties within the District(s), presently assessed like any other property within the Town (and/or Village), would then disproportionately bear the tax burden of supporting such construction costs and would therefore be affected by the potential for an additional benefits-derived assessment applicable only to district parcels.

As already indicated, taxation within a TD District would be determined on a benefits-derived basis rather than uniformly throughout the District as a fixed rate applied to the taxable assessed value (i.e., ad valorem). However, the Plan suggests no formula or criteria for how such a District tax based on benefits-derived would be calculated and applied. This makes evaluating the potential impact from this aspect of the Action somewhat difficult.

Notwithstanding the unavailability of any suggested formulae or recommendations regarding the potential configuration of the TD District benefits-derived levy, a simplified hypothetical calculation utilizing 2017 assessed valuations both within the Town (outside the Village) and within the Route
96/Route 251 Overlay District (both with and without the inclusion of residential properties) can give some idea of the potential effect by estimating the maximum potential tax burden on an *ad valorem* basis. Such a hypothetical follows immediately below (it is important to note that this hypothetical is *very* extreme as it assumes that the Town and/or the anticipated TD District would support *all* of the cost for construction of the six recommended Projects without any state or federal funding):

Cost and Financing

Assumed Construction Cost for Six High Priority Projects: $15,500,000

Assumed financing terms: 15 year term, 4% interest per annum

Anticipated Annual Debt Service: $1,400,000

Tax Base

Approximate Assessed Value 2017 within Town (outside Village) $1,896,000,000

Approximate Assessed Value 2017 within District (excluding Thruway) $642,000,000

Approximate Assessed Value 2017 within District (excl. Thruway & Residences) $560,000,000

Estimated Annual Tax Burden (on a uniform Ad Valorem basis)

Additional annual tax per $1,000 Assessed Value – Townwide $0.74

Additional annual tax per $1,000 Assessed Value – In District only incl. Residences $2.18

Additional annual tax per $1,000 Assessed Value - In District only excl. Residences $2.50

As the preceding hypothetical calculation shows, with the foregoing assumptions, and were the TD District to 1) support the *entire cost of all six Projects*, and 2) do so on an *ad valorem* basis (rather than on a benefits-derived basis), the annual tax levy for debt service within the District would approximate $2.18 per thousand Assessed Value if residential properties within the District were included and $2.50 per thousand Assessed Value if they were not. On the other hand, were the same cost to be supported via a Town wide (outside the Village) ad valorem levy, the additional annual tax levy for debt service within the Town as a whole would approximate only $0.74 per thousand Assessed Value. The difference factor of about 1/3rd is solely the result of there being approximately three times the Assessed Value within the Town as a whole to share the burden compared to that available within the hypothetical District to share the same burden.

Finally, to extrapolate from the foregoing hypothetical a rough gauge or estimate of the potential impact from a benefits-derived levy, the following should be noted. Both the total annual levy within the District (or Town, should that be the case) and the average per $1,000 of Assessed Value would remain unchanged in a benefits-derived scenario. However, based upon how the applicable formula would attribute the derivation of a benefit to individual properties, some parcels would be assessed more than would be the case on an *ad valorem* basis and others would be assessed less. Unfortunately, with the
information available, any attempt to estimate the potential range (e.g., from $\frac{1}{2}$ the equivalent assessment under an ad valorem scheme for some properties to twice the equivalent assessment for others) would be misleading and extremely speculative.

Cumulative Impacts

SEQRA requires consideration of cumulative impacts (see §617.9 (b)(5)(iii)(a)of the Regulations). Although the Regulations do not define “cumulative impacts”, NYS DEC has provided guidance in the SEQR Handbook (“the Handbook”, see pages 83 – 85, Questions 16 -22). In the response to Question 16, the Handbook indicates that cumulative impacts “occur when multiple actions affect the same resource(s)” and can occur “when the incremental or increased impacts of an action, or actions, are added to other past, present and reasonably foreseeable future actions”. Furthermore, the same response goes on to emphasize that cumulative impacts “can result from a single action or from a number of individually minor but collectively significant actions taking place over a period of time”. Finally, in the response to Question 18, the Handbook also states that cumulative impacts “must be assessed when actions are proposed, or can be foreseen as likely, to take place simultaneously or sequentially in a way that the combined impacts may be significant”.

In this instance, there are no actions beyond that reviewed herein that are proposed or foreseen as likely that would also result in potential impacts that could combine with those of the present Action. However, regarding consideration of cumulative impacts from multiple actions, it is relevant to note that the Action presently being reviewed does consist of multiple components, including six recommended construction projects, and that these are now considered a single action only as a consequence of the Town Board’s decision to expand the Action to include these components. Were the six construction projects now included in this Action to instead be reviewed individually, there would very likely be a need to consider how the construction phase impacts of each, particularly those involving temporary disruption and disturbance to normal traffic patterns, would contribute collectively to more significant impacts. Accordingly, this section notes that the potential for temporary, but significant, traffic impacts during construction of the six Projects will be greater when considering the six collectively, whether or not they coincide. And, should construction of some or all of the six projects coincide, the intensity of the consequent disruption and inconvenience to motorists would likely increase further. Should some or all be undertaken instead in sequence, the duration of the consequent disruption and inconvenience would then be extended.

Nevertheless, as these components now comprise a single action, the foregoing potential impacts are not formally a “cumulative impact”. Accordingly, the temporary impact to traffic during construction of any or all of the six Projects is considered more fully above in the foregoing section entitled “Potential Significant Adverse Environmental Impacts” under the sub-heading “Impact on Transportation”.
Irreversible and Irretrievable Commitments of Environmental Resources

Of the potential forms taken by irreversible and irretrievable commitments of environmental resources (e.g., permanent conversion of wetlands and loss of cultural resources, soils, wildlife, agricultural production, or socioeconomic conditions, etc.) this Action would potentially involve only the permanent conversion of wetlands. That potential impact is addressed above, in the foregoing section entitled “Potential Significant Adverse Environmental Impacts”, under the sub-heading “Impacts on Surface Water”.

Growth-inducing Aspects of the Proposed Action

In general, the Action is intended to reduce traffic congestion which is believed to be an impediment to economic development. That being so, it is conceivable that traffic congestion is presently suppressing growth that would otherwise occur within the community as a consequence of other forces already at play. Accordingly, reducing traffic congestion via the proposed Action could lead indirectly to increased growth as the suppressing influence of traffic congestion is reduced. If so, this would actually represent an intended consequence and benefit of the Action rather than an adverse environmental impact.

In particular, Project Number 1, the development of a new local street where none now exists along the Ontario Central Railroad, would open up to development land that would then front on the new street and would potentially induce growth within that two-mile segment bordering the new street. As growth is actually an intended consequence and as the greatest risk for an adverse impact from this growth involves inconsistency with existing land use patterns or zoning designations, that potential effect is evaluated in more detail in the foregoing section entitled “Potential Significant Adverse Environmental Impacts”, under the sub-heading “Consistency with Community Plans”.

Use and Conservation of Energy Impacts

The Action would involve use of energy only insofar as it is required to construct the various transportation improvements recommended as Project Numbers 1 through 6. Once construction and development of the improvements is complete, there should be no ongoing increase in energy consumption as a consequence of the Action. In fact, as the Action is intended to reduce traffic congestion and as the queuing and idling of vehicles now experienced during congested peaks is very energy inefficient, some post-construction reduction in energy consumption could be realized as a consequence of the Action.

Solid Waste Management Impacts & Consistency

The Action would not affect solid waste management practices and would only generate solid waste during the construction phases as a consequence of removing existing pavement, utilities, vegetation or soils to make way for construction of new, extended or expanded roadways. Any pavement, utilities, vegetation or soils necessarily removed, and not reused, would be disposed of consistent with present plans and legal requirements.
Impacts on Lands Used in Agricultural Production or within Agricultural Districts

No lands used in agricultural production or lands within agricultural districts are anticipated to be affected by the proposed Action. Although the Action would convert some land that is now utilized differently to roadways, none is used in agricultural production or is within an agricultural district.

Mitigation Measures

Although SEQR does require that an EIS include a description of mitigation measures (see §617.9 (b)(iv) of the Regulations), it imposes no absolute requirement that all impacts be entirely mitigated. However, SEQR does preclude agencies from making a final decision to undertake, fund, approve or disapprove an action that has been the subject of a final EIS prior to making a written findings statement (see §617.11 (c) of the Regulations) certifying (see §617.11 (d) (5) of the Regulations) that: “consistent with social, economic and other essential considerations from among the reasonable alternatives available, the action is one that avoids or minimizes adverse environmental impacts to the maximum extent practicable, and that adverse environmental impacts will be avoided or minimized to the maximum extent practicable by incorporating as conditions to the decision those mitigative measures that were identified as practicable” (emphasis added).

The ultimate functional objective, therefore, of describing mitigation measures in an EIS such as this is to enable agencies to:

- Identify potential mitigation measures that might avoid or minimize adverse environmental impacts;
- Distinguish those that are practicable from those that are not;
- Incorporate as conditions such mitigation measures as are found to be practicable; and,
- Certify, accordingly, that impacts will be avoided or minimized to the maximum extent practicable.

Traffic Mitigation Incorporated in Proposed Transportation Improvements

The Plan incorporated a number of specific assumptions regarding the scope of proposed elements and traffic mitigation measures included in the concept designs for the transportation improvements evaluated and recommended for implementation. These are listed below. These elements and mitigation measure were also included and are reflected in the additional analyses completed as part of this review regarding the benefits and effects anticipated from the Action. Accordingly, this environmental review assumes that these would be considered obligatory requirements for any undertaking, funding or approval of the six High Priority projects. Subsequent proposals to reduce or eliminate any of these measures, or discovery that they cannot be included for other reasons, would require additional environmental consideration and review. For more detail regarding this requirement, see the summary presented in this statement under the foregoing topic “Reliance on a Generic Environmental Impact Statement”.

Existing Conditions
• NYSDOT Improvements
 1. Main Street Fishers - protected only N/S lefts on NY Route 96
 2. NY Route 251 - NB left turn arrow on NY Route 96
 3. Lynaugh – Roundabout
 4. Other - Coordinated signals in the Village with 120 sec. cycle (from 90 sec. cycle)

Future Proposed Conditions

• Route 96 @ Lynaugh
 1. Shifted roundabout to the south
 2. Add a west leg to the roundabout to connect to the Railroad Road

• Route 96 @ Moore Ave./Maple Ave.
 1. Coordination with new signal on RR Road - 120 sec cycle

• Moore Ave. @ Railroad Road (NEW)
 1. Install new 2-phase signal
 2. Install/modify pedestrian accommodations (all approaches)
 3. Coordination - 120 sec cycle
 4. EB approach - add an exclusive left turn lane (250')
 5. WB approach - new Railroad extension connection to the west

• Route 96 @ School St.
 1. Remove traffic signal and pedestrian heads/crosswalks
 2. Restrict School Street access to right-in/right-out

• School Street @ Railroad Road (NEW)
 1. Install a mini-roundabout

• Route 96 @ High St./Ferris Driveway (NEW)
 1. Remove exclusive ped phase
 2. Modify signal
 3. Coordination - Modify cycle length from 120 seconds to 100 seconds

• Route 96 @ Rte. 251/Lane Road
 1. Add western leg (Lane Road)
 2. Modify signal to accommodate 4th leg
 3. Install/modify pedestrian accommodations (all approaches)
 4. Coordination - 120 sec cycle
 5. EB approach - Change approach lane configuration to an exclusive 300' left turn lane and a shared through/right lane
 6. WB approach - Install a shared left/through lane and a 200' right turn lane
 7. NB approach - Install an additional through lane and a 200' left turn lane
 8. SB approach - restripe TWLTL to add a 200' left turn lane
 9. SB approach - Install 200' right turn lane

• Rte. 251 @ Railroad Road (NEW)
 1. Connect Railroad Road to the south side of Rte. 251 (stop controlled)
 2. NB approach (Railroad Road) - L,R (Right slip with yield, 300' storage lane)
 3. WB approach - L,T
4. 4-lane section from Railroad Road to Route 96 on 251

- Route 96 - Lane Road to Omnitech Place
 1. Modify from 3-lane section to 5-lane section

- Route 96 @ Omnitech Place/Willowbrook Road NEW
 1. Add eastern leg (Willowbrook Road)
 2. Install new 3-phase signal (SBL)
 3. Install/modify pedestrian accommodations (all approaches)
 4. Coordination - 120 sec cycle
 5. WB approach - Construct approach with a shared left/through/right lane
 6. NB and SB approaches - restripe TWLTL to 100' left turn lanes

- Route 96 @ Main Street Fishers
 1. Coordination - 120 sec cycle

In addition to those listed above, the Plan also recommended, but did not include in the proposed six High Priority Projects, some additional measures that are listed below. Although these were recommended in the Plan and would have some benefit, as they are not formally included in the proposed Action being reviewed, this review makes no assumption regarding whether they would ultimately be included or not.

Future Proposed Conditions

- Rte. 251 @ Railroad Road (NEW)
 1. Install/modify pedestrian accommodations (all approaches)

- Route 96 @ Main Street Fishers
 1. EB approach - add a fourth lane (450' left and right turn lanes) L,L,T,R
 2. WB approach - add a third lane (200' right turn lane) L,T,R)

- Route 96 @ I-490 On-Ramp/Off-Ramps
 1. Signal timing modifications & coordination

- Route 96 @ Commerce Drive
 1. Signal timing modifications & coordination

- Route 96 @ High Street
 1. Signal timing modifications & coordination

- Route 96 @ Cobblestone Ct.
 1. Signal timing modifications & coordination

- Route 96 @ Turk Hill Rd.
 1. Signal timing modifications & coordination

- Route 96 @ Commons Blvd.
 1. Signal timing modifications & coordination

- Route 96 @ Route 250
 1. Signal timing modifications & coordination

- Route 96 @ Woodcliff Drive
 1. Signal timing modifications & coordination
Mitigation Identified for Impacts on Land

Excavation and removal of natural material.
Mitigation measures identified for impacts to land include those related to the potential need to transport material removed from the multiple construction sites. Although formally classified as impacts on land, the associated impacts are, in fact, primarily impacts to transportation and traffic. Mitigation identified relative to these are, therefore, described below under the heading “Mitigation Identified for Impacts to Transportation”.

Construction that would continue for more than one year or in multiple phases.
Mitigation measures identified for impacts to land include those related to the potential for construction continuing for more than one year or requiring multiple phases. As with the foregoing impacts related to removal of material, although the impacts identified relative to lengthy or multi-phased construction are formally classified as impacts on land, the associated impacts are, in fact, primarily impacts to transportation or traffic. Accordingly, mitigation identified for these potential impacts are described below under the heading “Mitigation Identified for Impacts to Transportation”.

Mitigation Identified for Impacts on Surface Water

Construction within or adjoining a freshwater wetland or in the bed or banks of any other water body
As the anticipated impacts within wetlands are expected to be minimal and as this is a generic review based only upon conceptual information, limitation to only wetland impacts eligible for permitting administered by the ACOE under authorized Nationwide Permits (in general, less than 1/10 of wetland fill or loss) has been identified as a mitigation measure.

As the concept plans are developed to the preliminary and final design stages, completion and utilization of reports providing formal delineation and characterization of potentially affected wetlands and streams identified in this review has been identified as a mitigation measure that would mitigate potential impacts by determining whether the conditions and potential impacts are consistent with those assumed herein, or whether there is instead a need for additional review under SEQRA as well as a potential need for further mitigation and/or design revisions.

Design incorporation and construction adherence to prevailing NYS standards for Erosion and Sedimentation Control during construction activities has been identified as a mitigation measure that would help safeguard neighboring properties, streams, wetlands, as well as other environmental resources, from the potential for damaging runoff impacts resulting from ongoing disturbance.

Installation of improvements for Stormwater Management required under NYS law has been identified as a mitigation measure that would help protect neighboring properties, streams, wetlands and other environmental resources from harmful changes in runoff during the post-construction period that could result from the Action’s creation of and modifications to impervious surfaces.
Mitigation Identified for Impacts on Transportation

Transport of natural material from construction sites.
The following have been identified as mitigation measures that would assist in minimizing potential temporary, but adverse nonetheless, impacts to transportation and traffic resulting from the transport of material removed from (or taken to) construction sites:

- Identification of and imposition of requirements to utilize exclusively preferred routes to and from construction sites that would minimize the impact to congested roadways, congested intersections, and residential neighborhoods;
- Identification of and imposition of requirements to utilize best practices typically relied upon to limit transport of soil and other natural materials by construction vehicles onto roadways adjoining construction sites;
- Identification of and imposition of requirements to adhere to restricted schedules for the transport of natural materials removed from (or being delivered to) construction sites that would restrict transport to intervals during which roadways and intersections that would otherwise be affected are expected to be relatively free from congestion; and,
- Should roadways through residential neighborhoods be utilized for transport of natural materials removed from (or being delivered to) construction sites, identification of and imposition of requirements to adhere to restricted schedules that would avoid transport through neighborhoods in the late evening, overnight, or very early morning hours.

Alteration to the present pattern of movement of people or goods – motor vehicles.

Access Management.

With respect to the proposal to develop a new local street along the Ontario Central Railroad, Appendix I to the Plan, entitled “Access Management and Land Use Zoning Strategies”, states the following (see p. 6 of Appendix I to the Plan, not appended to this statement):

“It is important to note this potential because a new access road presents an opportunity to create a route that includes all the fundamentals of access management (and Complete Streets, detailed below). Access management technique(s) implementation along this route will help ensure that the intent of developing the access road for congestion mitigation, improved safety, and accessibility to existing and future sites, is maintained. Additionally, development of this route will also fundamentally change how the corridor functions and the needs and opportunities for access management among existing and future development(s).”

For reference, the Appendix also opens with the Transportation Research Board’s formal definition of access management found in the TRB Manual as: “the programmatic control of the location, spacing, design, and operation of driveways, median openings, interchanges, and street connections to a roadway.” The Appendix also references the following Federal Highway Administration (FHWA) definition of the goal of access management as being to “bring attention to the importance and value of proactive management of access point...and to incorporate good access management principles whenever land development is pursued, and to revisit and improve upon existing facilities operations”.

Town of Victor Town Board, Lead Agency
DRAFT Generic Environmental Impact Statement 45 Route 96 Transformative Corridor Strategic Infrastructure Plan Adoption & Implementation
Accordingly, the following mitigation measures have been identified relative to how development of a new street could adversely affect travel within that portion of the corridor without appropriate modifications to the access management requirements presently in place:

- Reconsideration and potential expansion/updating of the Town of Victor’s present access management guidelines found in Section 5.0 of the Town’s present Design and Construction Standards document (mitigation for potential non-temporary transportation impacts related to development of the new roadway along the Ontario Central Railroad ROW); and,
- Review and amendment of the Town’s design and construction standards for land development related to access management to provide more detailed guidance relative to more access management techniques (see the recommendation presented on p. 12 of Appendix I to the Plan, not appended here).

Alteration to the present pattern of movement of people or goods – railroad.

With respect to impacts related to patterns of transportation of goods, without further mitigation Project Number 1 would require abandonment of the railroad’s present use of the segment of the existing ROW between the western terminus near Route 251 to and the eastern terminus near either Lynaugh Road or Plastermill Road. However, the ROW segment affected by the Project is believed to be wide enough to accommodate the proposed new street as well as realigned tracks that could continue to provide rail service in the future. The separate construction cost for relocation of railroad tracks within the segment between Route 251 and Plastermill Road has been estimated to range from $2.0 million to $2.9 million (this is in addition to the Project 1 construction cost estimated to range from $7.3 million to $9.3 million (for a construction estimate, see Appendix H). This reconstruction of a relocated replacement track (at the estimated cost indicated above) within the existing ROW and adjacent to the new street and associated sidewalk has been identified, therefore, as a mitigative measure that would make the necessary abandonment temporary rather than permanent.

Construction that would continue for more than one year or in multiple phase – Impact to transportation and traffic.

Mitigation measures have been identified that would assist in minimizing potential temporary, but adverse nonetheless, impacts to transportation and traffic resulting from construction that could persist for more than one year or require multiple phases. This review intends and assumes that these thresholds (namely, construction persisting for more than one year or requiring multiple phases) would be applied in the aggregate to all construction undertaken as part of the proposed Action. In other words, should any combination of constituent construction projects exceed the thresholds, then the identified mitigation measures identified here would apply to all, whether or not they would exceed the thresholds separately. The identified mitigation is as follows:

- Development and imposition of requirements to adhere to restricted construction schedules that would avoid detours and road closures directly affecting Corridor arterials and intersections known to experience significant congestion during AM and PM Peak hours and particular hours on weekends. It is assumed by this review that the restricted schedules implemented in this measure would bracket the relevant AM Peak, PM Peak and weekend hours appropriately so as to limit potential impacts throughout the entire interval (persisting more than a single hour)
during which congestion is typically elevated. This review also assumes that reliance on nighttime construction could be one method relied upon as such a mitigation measure in locations where it would be beneficial and could be implemented without undue overnight disturbance to nearby residents attempting to sleep. This review also recognizes that construction between dusk and dawn would likely require construction lighting that may be objected to by residents or others and assumes that the potential benefit from utilization of evening or overnight construction would offset the temporary impact from such lighting nonetheless. In the event that overnight construction is relied upon, this mitigation measure also includes a requirement that design documents include provisions requiring development of and adherence to a lighting plan describing how such lighting would be both deployed and utilized in a manner that would minimize impacts to nearby roads and land uses so far as it is practical to do so.

Temporary traffic detours and/or traffic delays as a consequence of construction.
See the identification of measures presented in this section under the foregoing topic heading “Construction that would continue for more than one year or in multiple phase – Impact to transportation and traffic”.

Degraded Arterial and Intersection LOS Anticipated from the Action
As noted in multiple locations within this document, when compared to the No Build scenario, and despite anticipated improvement overall, the proposed Action is expected to result in decreased arterial LOS in the following arterial segments within the Corridor: the Western Approach segment (LOS A to C) and the Main Street Fishers/Victor Mendon Road segment (LOS D to F). As described elsewhere in this review, this impact from the Action is understood to be due, at least in part, to the proposed installation of additional traffic signals within the Corridor necessary to maintain adequate LOS at intersections. This negative impact has therefore been identified as an “unavoidable impact” and no related mitigation measures relative to it have been identified.

Direct Induction of Growth by the Action and Associated Increase in Traffic Volume
In the foregoing section entitled “Potential Significant Adverse Environmental Impacts’, under the topic heading “Consistency with Community Plans”, this review identified a potential impact related the potential for development of the new street proposed in the Action (Project Number 1) to function as a new destination that would draw travelers to the area for whom the area would not otherwise become a destination. Although this review actually classifies this as a potential impact related to Consistency with Community Plans, as the primary impact would be to Transportation (and traffic) it is worth noting here that no mitigation measures relevant to this potential impact have been identified.

Mitigation Identified for Impacts on Noise, Odor and Light

Installation of new road lighting.
The following has been identified as a mitigation measure that would help protect residents and visitors from the impacts of additional outdoor lighting installed to illuminate new streets and extensions that would be constructed where none now exist:
• Incorporation and adherence to standard industry practices and local laws regarding preferential utilization of “cut-off” and “dark sky compliant” fixtures and elements effective at eliminating or minimizing illumination of adjoining properties as well as illumination of the sky or surfaces other than the roadway pavement, signage, and adjoining sidewalks.

Temporary increases in noise, odors, dust and outdoor lighting from construction.

Noise

The following has been identified as a mitigation measure that would help protect residents and visitors from the temporary impacts of construction-related noise:

• Incorporation and adherence to standard industry practices intended to reduce or manage construction impacts from noise including use of mufflers on equipment and avoidance of operating loud equipment in late evening or early morning hours.

As described above in this section under the foregoing topic “Mitigation Identified for Impacts to Transportation” under the heading “Excavation and removal of natural material – Transport from construction sites”, the following have been identified as a mitigation measure that would assist in minimizing potential temporary, but adverse nonetheless, impacts to neighborhoods related to transport from or to construction sites:

• Identification of and imposition of requirements to utilize exclusively preferred routes to and from construction sites that would minimize the impact to congested roadways, congested intersections and residential neighborhoods; and,

• Should roadways through residential neighborhoods be utilized for transport of natural materials removed from (or being delivered to) construction sites, the identification and imposition of requirements to adhere to restricted schedules that would avoid transport through neighborhoods in the late evening, overnight, or very early morning hours.

Odor and Dust

The following has been identified as a mitigation measure that would help protect residents and visitors from the temporary impacts of construction-related dust:

• Incorporation and adherence to standard industry practices intended to reduce or manage construction impacts from odor including use of water or other measures for dust control.

As described above in this section under the foregoing topic “Mitigation Identified for Impacts to Transportation” under the heading “Excavation and removal of natural material – Transport from construction sites”, the following has been identified as a mitigation measure that would assist in minimizing potential temporary, but adverse nonetheless, impacts to transportation and traffic related to production of dust at construction sites:

• Identification of and imposition or requirements to utilize best practices typically relied upon to limit transport of soil and other natural materials by construction vehicles onto roadways adjoining construction sites.
Outdoor Lighting

As described above in this section under the foregoing topic “Mitigation Identified for Impacts on Transportation” under the heading “Construction that would continue for more than one year or in multiple phase – Impact to transportation and traffic”, the following has been identified as a mitigation measure that would assist in minimizing potential temporary, but adverse nonetheless, impacts to related to construction utilization of outdoor lighting:

- Reliance on nighttime construction is one method that could be relied upon as a mitigation measure in locations where it would be beneficial and could be implemented without undue overnight disturbance to nearby residents attempting to sleep. This review recognizes that construction between dusk and dawn will likely require construction lighting that may be objected to by residents or others and assumes that the potential benefit from utilization of evening or overnight construction would offset the temporary impact from such lighting nonetheless. In the event that overnight construction is relied upon, this mitigation measure includes a requirement that design documents include provisions requiring development of and adherence to a lighting plan describing how such lighting would be both deployed and utilized in a manner that would minimize impacts to nearby roads and land uses so far as it is practical to do so.

Mitigation Identified for Inconsistencies with Community Plans

Land use components may be different from, or in sharp contrast to, current surrounding land use patterns.

Proposed action is inconsistent with local land use plans or zoning regulations.

Induction of secondary development impacts (e.g., residential or commercial development not included in the proposed action).

Changes in Use and Patterns of Use Following Development of a new Street along the Ontario Central Railroad ROW.

Mitigation has been identified that would reduce the impact related to the development of a new street (Project Number 1) within the present railroad ROW that now traverses a number of land use districts and also serves, in a number of instances, as the boundary between somewhat different districts. As described in the foregoing section entitled “Potential Significant Adverse Impacts” under the heading “Consistency with Community Plans”, although this segment of the railroad ROW has been functional as a boundary between adjoining and potentially dissimilar land use districts because it has provided no frontage or points of access and has been untraveled by motorists, cyclists or pedestrians, that will change when a new local street occupies the ROW. The persistence of multiple, dissimilar use intensities and districts (industrial, commercial, business, multiple residential and single family residential) along the new street will likely become problematic as will the absence of effective transition zones between the dissimilar districts. Furthermore, the persistence of multiple zoning designations along the new street will become progressively more at odds with what will likely become
a much more uniform pattern of uses along the new street. The relevant mitigation measure that has been identified is as follows:

- Town review and adoption of zoning law and zoning map amendments describing, implementing and delineating uses and districts more consistent with the preferred uses anticipated to develop once the new street has been constructed and opened to the public.

Direct Induction of Growth by the Action and Associated Increase in Traffic Volume

This review identifies a possible impact related the potential for development of the new street proposed in the Action (Project Number 1) to function as a new destination that would draw travelers to the area for whom the area would not otherwise become a destination. The description in the foregoing section entitled “Potential Significant Adverse Environmental Impacts’ notes that although this potential effect would increase traffic volumes, it is not taken into account in the traffic models as they only redistribute the same anticipated level of future traffic in both the No Build and Full Build scenarios. Regardless, and with the exception of somewhat related mitigation measures related to Access Control described in the foregoing section entitled “Mitigation Identified for Impacts on Transportation’, under the topic heading “Alteration to the present pattern of movement of people or goods – motor vehicles”, no mitigation measures relevant to this potential impact have been identified. Accordingly, this potential impact has been included among those described in the section that follows entitled “Adverse Environmental Impacts that cannot be Avoided or Adequately Mitigated”.

Access Management

See the description of mitigation described in the foregoing section entitled “Mitigation Identified for Impacts on Transportation” under the topic heading “Alteration to the present pattern of movement of people or goods – motor vehicles”.

Conversion of Land Presently Used Otherwise to Roadway Use Instead

With the exception of the foregoing mitigation described in reference to the impact of developing an opening to the public a new street within the present ROW occupied by the Ontario Central Railroad, no mitigation has been identified for impacts related to conversion of land now used for other purposes to roadway use instead.

Mitigation Identified for Fiscal Impact

No mitigation has been identified relative to the potential fiscal impact of establishing a TD District.

Mitigation Identified for Cumulative Impacts

Mitigation identified for “Cumulative Impacts” is the same as that identified above related to temporary construction impacts.
Adverse Environmental Impacts that cannot be Avoided or Adequately Mitigated

Impacts on Land
Other than those noted below as remaining impacts on transportation, there are no impacts on land remaining that cannot be avoided or adequately mitigated.

Impacts on Surface Water
Within the portion of the Ontario Central Railroad ROW proposed as the site for development of a new local street, some impact within NYS Freshwater Adjacent Zones (or buffers), will remain, including the installation of pavement where none now exists.

Some incidental impacts to NWI federal wetlands under the jurisdiction of the US ACOE not exceeding 1/10 acre of wetland fill or loss (eligible for a permit under the “Nationwide” permitting process) may remain.

Regarding streams, impacts may remain in multiple locations (Projects 1, 3, 4 and 5), including the possible re-routing of limited segments, the installation of new, or removal and replacement with new, culverts of greater diameter, and the lengthening of existing culverts or pipes to extend the reach of those presently conveying streams beneath roadways and other improvements.

Impacts on Transportation
The LOS within some intersections or segments would become worse as a consequence of the proposed changes, such as signalization, included in the Action in order to improve the corridor overall. This is particularly true of northbound and westbound vehicular travel in the PM Peak Hour within the Western Approach and Main Street Fishers/Victor Mendon Road segments of the arterial Corridor where the arterial LOS would decline from (LOS A to C) and (LOS D to F), respectively.

Some temporary impacts to traffic will remain as a consequence of need to transport removed material from construction sites despite efforts to time and route trucks transporting material in a manner that minimizes disruptions.

Construction would impact traffic temporarily at multiple locations as a result of construction-related traffic, closures and detours.

Despite mitigation that would avoid a permanent abandonment of the railroad presently operating within the portion of the ROW proposed as the site for development of a new local street, the need will remain for a temporary abandonment of railroad tracks, for a temporary cessation of service, and for the subsequent replacement of tracks on a new alignment within the same ROW.

Impacts on Noise, Odor and Light
Some impact from new street lighting installations associated with new streets and connections would remain despite incorporation of standard mitigating features such as cut-off, dark-sky compliant fixtures as mitigation.
Typical temporary noise, odor (dust) and lighting (for nighttime construction) impacts will remain from construction activity at multiple sites throughout the Town with schedules that may overlap and could persist for longer than one year.

Consistency with Community Plans
The new street and connections will require conversion of land presently used otherwise to use as roadways instead. With the exception of mitigation proposed specifically with respect to the development of a new street within the ROW presently occupied by the Ontario Central Railroad, this impact will remain, unmitigated.

The potential will remain for development of the new street proposed in the Action (Project Number 1) to function as a new destination that would draw travelers to the area for whom the area would not otherwise become a destination. This potential effect would increase traffic volumes to levels not taken into account in the traffic models as they have only redistributed the same anticipated level of future traffic in both the No Build and Full Build scenarios.

The intended relief from the presently suppressing influence of traffic congestion upon economic development is anticipated to result in some apparent growth induction.

Fiscal Impacts
Properties within the established TD District would potentially be impacted by a separate additional tax assessment not imposed elsewhere within the municipality.

Assumptions Incorporated in this Generic Review regarding Conditions or Criteria Under Which Future Actions will be Undertaken, Funded or Approved
This generic review has incorporated the assumptions listed below regarding conditions or criteria under which future actions will be undertaken, funded or approved. Future inability to confirm compliance and consistency with the following will trigger the need for further environmental review prior to any decision by a state agency or municipality to undertake, fund or approve the action. For more detail regarding this requirement, see the summary presented in this statement under the foregoing topic “Reliance on a Generic Environmental Impact Statement”.

- The mitigating measures described in the foregoing section “Mitigation Measures” under the topic heading “Traffic Mitigation Incorporated in Proposed Transportation Improvements” will continue to be included in the design of the proposed six High Priority Projects as indicated.
- The indicated abandonment of the segment of railroad presently utilized by the Ontario Central Railroad will be temporary only as a consequence of implementation of the described mitigation measure that would construct a replacement track within the existing ROW adjacent to the proposed new street and related improvements.
- Although a NYS DEC permit for work within the 100’ wetland adjacent area (also known as “the wetland buffer”) will no doubt be required, this statement assumes that there will be no direct
impact to NYS DEC Freshwater wetlands located west of and adjacent to the existing Ontario Central Railroad ROW.

- Impacts to NWI federal wetlands under the jurisdiction of the US ACOE will not exceed 1/10 acre of wetland fill or loss and will be permittable under the “Nationwide” permitting process.

Consideration of a Range of Reasonable Alternatives

Regulatory Background Regarding Alternatives

SEQR requires (see §617.9 (b)(v) of the Regulations) that an EIS include: “a description and evaluation of the range of reasonable alternatives to the action that are feasible, considering the objectives and capabilities of the project sponsor” (emphasis added). As referenced above under the topic of “Mitigation Measures”, SEQR also precludes agencies from making a final decision to undertake, fund, approve or disapprove an action that has been the subject of a final EIS prior to making a written findings statement (see §617.11 (c) of the Regulations) certifying (see §617.11 (d) (5) of the Regulations) that: “consistent with social, economic and other essential considerations from among the reasonable alternatives available, the action is one that avoids or minimizes adverse environmental impacts to the maximum extent practicable . . .” (emphasis added).

The ultimate functional objective, therefore, of evaluating alternatives in an EIS such as this is to enable agencies to:

- Identify potential alternatives that might avoid or minimize adverse environmental impacts;
- Determine whether a given alternative is feasible considering the objectives and capabilities of the project sponsor;
- Incorporate such feasible alternatives as are found to be practicable; and,
- Certify, accordingly, that from among the reasonable alternatives available, the action is one that avoids or minimizes environment impacts to the maximum extent practicable.

Alternatives Considered and Approach

The “No Action Alternative” is among those considered in this review. SEQRA requires that the range of alternatives include the no action alternative (see §617.9 (b)(v) of the Regulations) and that consideration of the no action alternative should include an evaluation of the adverse or beneficial site changes that are likely to occur in the reasonably foreseeable future in the absence of the proposed action (see §617.9 (b)(v) of the Regulations). In this statement the No Action Alternative is also sometimes referred to as the “No Build” alternative whereas the proposed Action is sometimes also referred to as the “Build”, “Full Build” or “All Projects” alternative.

Regarding alternatives, SEQRA also anticipates consideration of feasible alternatives with the capacity to avoid or minimize impacts, including, as appropriate, alternative: (a) sites; (b) technology; (c) scale or magnitude; (d) design; (e) timing; (f) use; and (g) types of action (see §617.9 (b)(v) of the Regulations). Two alternatives that are reduced in scale or magnitude compared to the proposed Action are considered in this review.
Reduced Alternative A, the more modest of the two reduced-magnitude alternatives, would include only the improvements proposed to existing roadways, namely, conversion of the Route 96 segment from 3-lanes to 5-lanes (Project Number 2) and the conversion of the existing intersection of Lane Road, Victor Egypt Road, and Lynaugh Road to a roundabout (Project Number 6). This alternative is sometimes referred to herein as “Projects 2 and 6”. Reduced Alternative B, the more extensive of the two, would include all of the six proposed Projects with the exception of only the development of a new local street along the Ontario Central Railroad ROW (Project Number 1). This review sometimes refers to this more expansive alternative as “Projects 2 thru 6”. As both of these reduced-magnitude alternatives exclude the new local street along the Ontario Central Railroad ROW and as both include the Route 96 conversion from 3-lanes to 5-lanes as well as the Lane Road/Victor Egypt Road/Lynaugh Road roundabout, the primary difference between them is the inclusion in “B” of the three projects that would establish new connections in three locations: between Route 251 and Lane Road, between Omnitech Place and Willowbrook Road, and between Plastermill Road, Collett Road and Delray Drive.

As noted in the foregoing “Benefits of the Proposed Action” section of this document, the Full Build 2040 software model was created by incrementally adding the six High Priority Projects to the No Build 2040 model. They were added with Alternatives A and B in mind in that Project 2 and 6 were added first to create Reduced Alternative A, then Projects 3, 4, and 5 to create Reduced Alternative B, and then finally Project 1 to ultimately create Full Build 2040. Additional, and more detailed, analyses of traffic models and calculations of anticipated LOS as well as other related measures were completed as part of this review subsequent to publication of the Plan and the information provided in Appendix H. Although the results of some of these analyses are summarized in the sections and tables that follow, the detailed technical data is included only in the appendices as listed below.

Traffic Levels of Service, Measures of Effectiveness and Performance relative to the No Action alternative as well as the Proposed Action were evaluated and are presented in the following Appendices (the No Action alternative and the following Appendices were previously referenced in the discussion of potential benefits of the Action):

- Appendix J Intersection Levels of Service PM Peak - No Build and Full Build (All Projects)
- Appendix K Arterial Level s of Service PM Peak - No Build and Full Build (All Projects)
- Appendix L Detailed Measures of Effectiveness PM Peak - No Build and Full Build (All Projects)
- Appendix M Performance PM Peak - No Build and Full Build (All Projects)

Traffic Levels of Service, Measures of Effectiveness and Performance relative to the two reduced-magnitude alternatives were also evaluated and are presented in the following Appendices:

- Appendix N Intersection Levels of Service PM Peak- Projects 2 and 6, and Projects 2 thru 6
- Appendix O Arterial Level s of Service PM Peak - Projects 2 and 6, and Projects 2 thru 6
- Appendix P Detailed Measures of Effectiveness PM Peak - Projects 2 and 6, and Projects 2 thru 6
- Appendix Q Performance PM Peak - Projects 2 and 6, and Projects 2 thru 6

To assist in evaluating the traffic benefits and/or traffic impacts resulting from the three alternatives (the No Action Alternative, Reduced Alternative A, and Reduced Alternative B), the results of the
analyses referenced in the foregoing paragraphs are presented below in summary tables. For the No Action Alternative evaluation the data is presented to enable comparison of the No Build and Build scenarios. In the case of Reduced Alternatives A and B, the data for that alternative scenario is also added to the tables to enable further comparison with the “No Build” to “Full Build” changes expected from the Action.

Two tables are presented relative to each of the three alternatives. For each alternative the first table (i.e., Tables 4, 7 and 9) presents the Arterial LOS, Delay and Average Speed calculated for five different segments of the Corridor. The second table that is presented for each alternative (i.e., Tables 5, 8 and 10) then present the Intersection LOS, Delay and Average Speed calculated for multiple intersections within five different segments of the Corridor. As a reference only, the Arterial values for each of the segments have also been taken from the initial tables and added to the second (indicated with a tinted highlight and italics). To be clear, the values in the first table (Tables 4, 6 and 8) are Arterial calculations whereas those in the second (Tables 5, 8, and 10) are Intersection calculations and are not interchangeable as they are based on similar but somewhat different parameters. Although the arterial values for each Corridor segment have been added to the second table as a reference, the added arterial values are calculated from data different from intersection values reported in the second table.

To see the arterial values at intermediate locations from which the arterial values have actually been derived, please see Appendices K and O.

In Tables 5, 8 and 10 certain intersections exist in only some scenarios and have been indicated with a “-“ symbol in those scenarios where they do not, or would not, exist in the indicated form. Finally, in the pairs of tables that follow regarding each alternative, green arrow symbols have been added to generally indicate significant improvements relative to traffic congestion and red arrows have been added to indicate the opposite.

No Action Alternative

To assist in evaluating the No Action alternative relative to the proposed Action, Tables 4 and 5 are duplicated below (these tables are first presented above in the section entitled “Benefits of the Proposed Action”, under the sub-heading “Traffic and Transportation Benefits of All Components of the Proposed Action Combined”).

It is obvious that the No Action Alternative would avoid any and all adverse environmental impacts that would result from the proposed Action. However, as the summary of proposed Action benefits presented above in the section entitled “Benefits of the Proposed Action” would predict, the No Action Alternative would also deprive the community of significant reductions in traffic congestion.

Table 4 presents the PM Peak Arterial LOS, Delay and Average Speed anticipated in the year 2040, calculated for both the No Build (No Action) and the Full Build (proposed Action) scenarios. With respect to Arterial LOS, the table shows that the proposed Action, when compared to the No Action scenario, is expected to yield significant reductions in arterial congestion for southbound and eastbound motorists within the Overall Corridor (LOS D to C) as well as within the following Corridor segments specifically: the Village (LOS C to B); Western Approach (LOS E to C); and, Main Street Fishers/Victor Mendon Road (LOS F to E). As the primary objective of the proposed Action is reduction in traffic...
congestion, it is fundamental to appreciate that such reductions in arterial congestion will not manifest in the absence of the proposed Action.

Regarding potential adverse impacts, as was noted in the foregoing sections entitled “Potential Significant Adverse Environmental Impacts”, and “Adverse Environmental Impacts that cannot be Avoided or Adequately Mitigated”, the proposed Action would result in some additional arterial congestion and delay for northbound and westbound motorists within two segments of the Corridor: the Western Approach segment and the Main Street Fishers/Victor Mendon Road segment. Obviously, this would be among the adverse impacts avoided in the No Action scenario.

<table>
<thead>
<tr>
<th>Effect on Arterial Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach and Corridor Segments</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Southbound and Eastbound</td>
</tr>
<tr>
<td>Eastern End (Insufficient Data)</td>
</tr>
<tr>
<td>The Village</td>
</tr>
<tr>
<td>Western Approach</td>
</tr>
<tr>
<td>Main St. Fishers/Victor Mendon Rd.</td>
</tr>
<tr>
<td>Eastview</td>
</tr>
<tr>
<td>Overall</td>
</tr>
<tr>
<td>Northbound and Westbound</td>
</tr>
<tr>
<td>Eastern End (Insufficient Data)</td>
</tr>
<tr>
<td>The Village</td>
</tr>
<tr>
<td>Western Approach</td>
</tr>
<tr>
<td>Main St. Fishers/Victor Mendon Rd.</td>
</tr>
<tr>
<td>Eastview</td>
</tr>
<tr>
<td>Overall</td>
</tr>
</tbody>
</table>

Table 5 presents analogous data based on somewhat similar calculations for individual intersections within the Corridor. As the table shows, the proposed Action is anticipated to yield significant reductions in traffic congestion at the following intersections:

- Route 96/School Street (LOS C to A);
- Route 96/High Street (LOS D to B);
- Route 96/Route 251 (LOS E to C);
- Route 96/Omnitech Place (LOS F to C); and,
- Route 251/Rowley Road/Main Street Fishers (LOS remains F, but seconds of signal delay reduced from 113 to 81).
Effect on Intersection Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)

<table>
<thead>
<tr>
<th>Intersections within Given Corridor Segments</th>
<th>LOS</th>
<th>Total Signal Delay (sec)</th>
<th>Avg. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Build</td>
<td>Full Build</td>
<td>No Build</td>
</tr>
<tr>
<td>EASTERN END</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/McMahon Road</td>
<td>A</td>
<td>A</td>
<td>2.0</td>
</tr>
<tr>
<td>Victor Egypt/Lynaugh/Lane: No Signal</td>
<td>A</td>
<td>-</td>
<td>8.7</td>
</tr>
<tr>
<td>Victor Egypt/Lynaugh/Lane: R’ndabout</td>
<td>-</td>
<td>A</td>
<td>4.8</td>
</tr>
<tr>
<td>Route 96/Lynaugh</td>
<td>B</td>
<td>B</td>
<td>14.1</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>THE VILLAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Church Street</td>
<td>A</td>
<td>A</td>
<td>4.2</td>
</tr>
<tr>
<td>Route 96/Moore Ave/Maple Ave</td>
<td>C</td>
<td>C</td>
<td>23.7</td>
</tr>
<tr>
<td>Route 96/School Street</td>
<td>C</td>
<td>A</td>
<td>27.7</td>
</tr>
<tr>
<td>Route 96/High Street</td>
<td>D</td>
<td>B</td>
<td>48.2</td>
</tr>
<tr>
<td>New Local Street/Maple Ave</td>
<td>-</td>
<td>C</td>
<td>34.3</td>
</tr>
<tr>
<td>New Local Street/School Street</td>
<td>-</td>
<td>A</td>
<td>8.8</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>C</td>
<td>B</td>
<td>94.1</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>C</td>
<td>C</td>
<td>43.5</td>
</tr>
<tr>
<td>WESTERN APPROACH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Route 251: 3 leg</td>
<td>E</td>
<td>-</td>
<td>72.9</td>
</tr>
<tr>
<td>Route 96/Lane Road</td>
<td>A</td>
<td>-</td>
<td>8.3</td>
</tr>
<tr>
<td>Route 96/Route 251/Lane Road</td>
<td>-</td>
<td>C</td>
<td>33.0</td>
</tr>
<tr>
<td>Route 96/Omnitech Pi: 3 leg, No Signal</td>
<td>F</td>
<td>-</td>
<td>71.0</td>
</tr>
<tr>
<td>Route 96/Omnitech/Willowbrook: Signal</td>
<td>-</td>
<td>C</td>
<td>34.7</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>E</td>
<td>C</td>
<td>171.3</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>A</td>
<td>C</td>
<td>12.5</td>
</tr>
<tr>
<td>MAIN ST. FISHERS/VICTOR MENDON ROAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Local Street/Route 251</td>
<td>-</td>
<td>B</td>
<td>14.3</td>
</tr>
<tr>
<td>Route 251/Rowley/Main Street Fishers</td>
<td>F</td>
<td>F</td>
<td>113.5</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>F</td>
<td>E</td>
<td>181.9</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>D</td>
<td>F</td>
<td>108.0</td>
</tr>
<tr>
<td>EASTVIEW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/490 WB On-Ramp/Off-Ramp</td>
<td>C</td>
<td>C</td>
<td>24.3</td>
</tr>
<tr>
<td>Route 96/Commerce Drive</td>
<td>C</td>
<td>C</td>
<td>29.1</td>
</tr>
<tr>
<td>Route 96/High Street</td>
<td>D</td>
<td>D</td>
<td>41.4</td>
</tr>
<tr>
<td>Route 96/Cobblestone Court</td>
<td>C</td>
<td>C</td>
<td>20.9</td>
</tr>
<tr>
<td>Route 96/Turk Hill Road</td>
<td>C</td>
<td>C</td>
<td>29.7</td>
</tr>
<tr>
<td>Route 96/Commons Blvd</td>
<td>C</td>
<td>C</td>
<td>25.8</td>
</tr>
<tr>
<td>Route 96/Route 250</td>
<td>B</td>
<td>B</td>
<td>15.4</td>
</tr>
<tr>
<td>Route 96/Woodcliff Drive</td>
<td>F</td>
<td>F</td>
<td>131.5</td>
</tr>
<tr>
<td>Route 96/I-490 Exit 28</td>
<td>B</td>
<td>B</td>
<td>19.8</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>C</td>
<td>C</td>
<td>161.1</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>D</td>
<td>D</td>
<td>207.2</td>
</tr>
</tbody>
</table>

Table 5
As would be the case relative to the improvements in Arterial LOS presented in Table 4, the improvements in Intersection LOS listed above in Table 5 would not be realized in the No Action scenario. Unlike the data presented in the foregoing table relative to northbound or westbound travel, none of the intersections presented in Table 5 exhibit a significant increase in traffic congestion or delay as a consequence of the proposed Action. That being so, there are no adverse impacts to intersections that the No Action scenario would avoid.

Reduced Alternative A - Route 96 3-Lane to 5-Lane Conversion and Lane Road/Victor Egypt Road/Lynaugh Road Roundabout Only

Reduced Alternative A would include only the improvements proposed to existing roadways, namely, the conversion of the Route 96 segment from 3-lanes to 5-lanes (Project Number 2) and the conversion of the existing intersection of Lane Road, Victor Egypt Road, and Lynaugh Road to a roundabout (Project Number 6). This alternative is sometimes referred to herein as “Projects 2 and 6”.

This alternative, as the more modest of the two reduced-magnitude alternatives, is therefore the least disruptive to the setting and therefore of more interest as it would be more effective at avoiding or reducing potential adverse environmental impacts. As it involves only improvements to two existing roadways, it would avoid much of the potential delay and inconvenience associated with multiple, protracted, periods of roadway construction. As it would not include development of any new streets or connections, it would also avoid potential land use and zoning conflicts as well as any impacts associated with conversion of land now utilized differently to roadway use instead. Finally, it appears to avoid as well any potential wetland impacts and is associated with only a single potential impact to streams (the stream located at the intersection proposed for development of the new roundabout in Project Number 6).

Despite the potentially effective avoidance of multiple impacts, in order to assess the feasibility of Reduced Alternative A, the capacity of this alternative to accomplish the purpose of the proposed Action and satisfy its beneficial objectives must nonetheless be evaluated relative to the capacity of the Proposed Action to do the same.

Table 7 presents information relative to PM Peak Arterial LOS, Delay and Average Speed anticipated in 2040 for the Reduced Alternative A scenario as well as for the “No Build” and “Full Build” scenarios.
As was shown in Table 4, the proposed Action, when compared to the No Action scenario, would be expected to yield significant reductions in arterial congestion for southbound and eastbound motorists within the:

- Overall Corridor (LOS D to C);
- Village Segment (LOS C to B);
- Western Approach Segment (LOS E to C); and,
- Main Street Fishers/Victor Mendon Road Segment (LOS F to E).

Table 7 shows that Reduced Alternative A, when compared to the No Action scenario, would be expected to yield only the following reductions in arterial congestion for southbound and eastbound motorists:

- Western Approach Segment (LOS E to B).

It should be noted that the above arterial improvement in the Western Approach is actually greater in the Reduced Alternative A scenario (LOS E to B) than in the proposed Action scenario (LOS E to C). However, none of the reductions in arterial traffic congestion within the Village segment (LOS C to B), within the Main Street Fishers/Victor Mendon Road segment (LOS F to E), or within the Overall Corridor (LOS D to C) expected as a result of the proposed Action would be anticipated to manifest as a result of Reduced Alternative A.

As was noted in the foregoing evaluation of the No Action alternative, the proposed Action would result in some additional arterial congestion and delay for northbound and westbound motorists within the Western Approach (LOS A to C) and Main Street Fishers/Victor Mendon Road (LOS D to F) segments of the Corridor. Reduced Alternative A would avoid these negative impacts as the arterial LOS within these segments remains unchanged when compared to the No Build scenario.
Table 8 presents data analogous to that in Table 7 based on somewhat similar calculations for individual intersections within the Corridor. As was shown in Table 5, the proposed Action is anticipated to yield significant reductions in intersection traffic congestion at the following intersections:

- Route 96/School Street (LOS C to A);
- Route 96/High Street (LOS D to B);
- Route 96/Route 251 (LOS E to C);
- Route 96/Omnitech Place (LOS F to C); and,
- Route 251/Rowley Road/Main Street Fishers (LOS remains F, but seconds of signal delay reduced from 113 to 81).

In comparison, and as shown in Table 8, Reduced Alternative A would be anticipated to yield reductions in intersection traffic congestion at only the following intersections:

- Route 96/Route 251 (LOS E to B, somewhat better than the LOS E to C anticipated to result from the proposed Action).

Importantly, Reduced Alternative A would not yield the following reductions in congestion at intersections anticipated to result from the proposed Action:

- Route 96/School Street (LOS C to A);
- Route 96/High Street (LOS D to B);
- Route 96/Omnitech Place (LOS F to C); and,
- Route 251/Rowley Road/Main Street Fishers (LOS remains F, but seconds of signal delay reduced from 113 to 81).

In conclusion, when evaluating calculated Arterial LOS and related measures, Reduced Alternative A would be expected to reduce congestion within only one of the five Corridor segments whereas the proposed Action would reduce congestion within three of the segments. Using the same Arterial measure, whereas the proposed Action would also be expected to reduce congestion within the Overall Corridor, Reduced Alternative A would not. When evaluating calculated Intersection LOS and related measures, Reduced Alternative A would be expected to reduce intersection congestion at only a single intersection whereas the proposed Action would reduce congestion at five. Accordingly, when compared to the proposed Action, Reduced Alternative A is very poor at realizing the objectives of the proposed Action and delivering the same benefits expected from the Action.
<table>
<thead>
<tr>
<th>Segment</th>
<th>LOS No Build</th>
<th>Alt A</th>
<th>Full Build</th>
<th>Total Delay (sec)</th>
<th>Avg. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASTERN END</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/McMahon Road</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>2.0</td>
<td>25</td>
</tr>
<tr>
<td>Route 96/McMahon Road</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>2.0</td>
<td>26</td>
</tr>
<tr>
<td>Route 96/McMahon Road</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>2.0</td>
<td>25</td>
</tr>
<tr>
<td>THE VILLAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Church Street</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>4.2</td>
<td>25</td>
</tr>
<tr>
<td>Route 96/Church Street</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>4.2</td>
<td>26</td>
</tr>
<tr>
<td>Route 96/Church Street</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>4.0</td>
<td>25</td>
</tr>
<tr>
<td>WESTERN APPROACH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Route 251: 3 leg</td>
<td>E</td>
<td>B</td>
<td>-</td>
<td>72.9</td>
<td>31</td>
</tr>
<tr>
<td>Route 96/Route 251: 3 leg</td>
<td>E</td>
<td>B</td>
<td>-</td>
<td>71.0</td>
<td>31</td>
</tr>
<tr>
<td>Route 96/Route 251: 3 leg</td>
<td>E</td>
<td>B</td>
<td>-</td>
<td>71.0</td>
<td>31</td>
</tr>
<tr>
<td>MAIN ST. FISHERS/VICTOR MENDON ROAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Local Street/Route 251</td>
<td>-</td>
<td>-</td>
<td>B</td>
<td>14.3</td>
<td>27</td>
</tr>
<tr>
<td>Route 251/Rowley/Main Street Fishers</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>113.5</td>
<td>12</td>
</tr>
<tr>
<td>EASTVIEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/i-490 WB On-Ramp/Off-Ramp</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>24.3</td>
<td>16</td>
</tr>
<tr>
<td>Route 96/i-490 WB On-Ramp/Off-Ramp</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>24.3</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 8

The table above shows the impact of Alternative A on intersection levels of service, delay, and average speed in 2040 (PM peak) for various segments along the Route 96 Transformative Corridor Strategic Implementation Plan. The LOS (Level of Service) is measured in terms of delay and speed, with values indicating the efficiency of traffic flow. The table includes data for different segments, such as New Local Street/Route 251, Route 96/Church Street, and Route 96/i-490 WB On-Ramp/Off-Ramp, among others. The data is presented in a tabular format, with columns for 'No Build', 'Alt A', and 'Full Build', and rows for 'Total Delay (sec)' and 'Avg. Speed (mph)'.
Alternative B – Excluding Only the New Local Street Along Ontario Central Railroad

Reduced Alternative B would include all of the proposed Projects with the single exception of the development of a new local street along the Ontario Central Railroad ROW (Project Number 1). Accordingly, this review sometimes refers to this alternative as “Projects 2 thru 6”. As both of the reduced-magnitude alternatives considered herein exclude the new local street along the Ontario Central Railway ROW and both include the Route 96 conversion from 3-lanes to 5-lanes as well as the Lane Road/Victor Egypt Road/Lynaugh Road roundabout, the only difference between Reduced Alternative B and Reduced Alternative A is the inclusion in “B” of the three projects that would establish new connections in three locations: between Route 251 and Lane Road, between Omnitech Place and Willowbrook Road, and between Plastermill Road, Collett Road and Delray Drive.

The single Action component excluded from Reduced Alternative B, the development of a new local street along the Ontario Central Railroad (Project Number 1), is also the single component with the greatest potential for environmental impacts. This one component includes the potential for wetland impacts, stream impacts, impacts to the railroad associated with abandonment of that segment of active track, impacts related to inconsistency with multiple dissimilar nearby and adjoining land uses and districts, impacts related to development of more than two miles of roadway where none presently exists, impacts related to lighting of a new roadway, and impacts related to traffic disruption resulting from a large-scale, long duration construction project. There are no alternatives versions of this component that would reduce or eliminate these impacts to a significant degree. Of all the Action components this single component also seems most likely to encounter practical and logistical obstacles to implementation including construction and land acquisition costs and agreement from the RR to abandon an active railway (or, alternatively, to find the funds to reconstruct it). Furthermore, and as was referenced in the foregoing section describing mitigation measures, although proposed mitigation that would enable the railroad abandonment to be only temporary rather than permanent has been identified, it would be relatively costly.

All of the foregoing regarding impact avoidance argue in favor of considering a reduced-magnitude alternative like this that would exclude Project Number 1. By virtue of its exclusion of Project Number 1, Reduced Alternative B would avoid or minimize potential impacts to wetlands, to streams, to the Ontario Central Railroad, to existing land use patterns and land use districts, to lands now used otherwise that would instead be converted to use as a roadway, to adjoining properties from illumination of a new street, and to traffic from temporary disruptions related to a significant construction project more than two miles in length parallel to the Route 96 corridor. However, even given the extensive list of impacts that this alternative might avoid or minimize, the capacity of this alternative to accomplish the purpose of the proposed Action and satisfy its beneficial objectives must nonetheless be evaluated relative to the capacity of the Proposed Action to do so.
Alternative B Effect on Arterial Levels of Service, Delay & Avg. Speed in 2040 (PM Peak)

<table>
<thead>
<tr>
<th>Approach and Corridor Segments</th>
<th>LOS</th>
<th>Total Signal Delay (sec)</th>
<th>Avg. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Build</td>
<td>Alt B</td>
<td>Full Build</td>
</tr>
<tr>
<td>Southbound and Eastbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Village (Insufficient Data)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Approach</td>
<td>E</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Main St. Fishers/Victor Mendon Rd.</td>
<td>F</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Eastview</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Overall</td>
<td>D</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Northbound and Westbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Village (Insufficient Data)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Approach</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Main St. Fishers/Victor Mendon Rd.</td>
<td>D</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>Eastview</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 9

As was shown in Table 4, the proposed Action, when compared to the No Action scenario, would be expected to yield significant reductions in arterial congestion for southbound and eastbound motorists within the:

- Overall Corridor (LOS D to C);
- Village Segment (LOS C to B);
- Western Approach Segment (LOS E to C); and,
- Main Street Fishers/Victor Mendon Road Segment (LOS F to E).

Table 9 shows that Reduced Alternative B, when compared to the No Action scenario, would be expected to yield only the following reductions in arterial congestion for southbound and eastbound motorists:

- Overall Corridor (LOS D to C);
- Western Approach Segment (LOS E to C); and,
- Main Street Fishers/Victor Mendon Road Segment (LOS F to E).

The beneficial reductions in arterial traffic congestion expected for southbound and eastbound motorists within the Village segment (LOS C to B) as a result of the proposed Action would not be expected to manifest as a result of Reduced Alternative B.

As was noted in the foregoing evaluation of the No Action alternative, the proposed Action would result in some additional arterial congestion and delay for northbound and westbound motorists within the Western Approach (LOS A to C) and Main Street Fishers/Victor Mendon Road (LOS D to F) segments of
the Corridor. Reduced Alternative B would avoid these adverse impacts as the LOS within these segments remains unchanged when compared to the No Build scenario.

Finally, the additional arterial improvement for southbound and eastbound motorists in the Western Approach found in the Reduced Alternative A scenario when compared to the proposed Action scenario (LOS E to B compared to LOS E to C) is not found with Reduced Alternative B which, like the proposed Action, shows improvement instead from LOS E to C only.

Table 10 presents data analogous to that in Table 9 based on somewhat similar calculations for individual intersections within the Corridor. As was shown in Table 5, the proposed Action is anticipated to yield significant reductions in traffic congestion at the following intersections:

- Route 96/School Street (LOS C to A);
- Route 96/High Street (LOS D to B);
- Route 96/Route 251 (LOS E to C);
- Route 96/Omnitech Place (LOS F to C); and,
- Route 251/Rowley Road/Main Street Fishers (LOS remains F, but seconds of signal delay reduced from 113 to 81).

In comparison, and as shown in Table 10, Reduced Alternative B would be anticipated to yield reductions in traffic congestion at only the following intersections:

- Route 96/Route 251 (LOS E to C);
- Route 96/Omnitech Place (LOS F to C); and,
- Route 251/Rowley Road/Main Street Fishers (LOS remains F, but seconds of signal delay reduced from 113 to 81).

Reduced Alternative B would not yield the following beneficial reductions in congestion at intersections that are anticipated to result from the proposed Action:

- Route 96/School Street (LOS C to A);
- Route 96/High Street (LOS D to B);

In conclusion, when evaluating the calculated Arterial LOS and related measures, Reduced Alternative B would be expected to reduce arterial congestion within only two of the five Corridor segments whereas the proposed Action would reduce congestion within three of the segments. Using the same Arterial measure, Reduced Alternative B would be expected to reduce congestion within the Overall Corridor to approximately the same level as that expected from the proposed Action. When evaluating calculated Intersection LOS and related measures, Reduced Alternative B would be expected to reduce congestion at only three intersections whereas the proposed Action would reduce congestion at five. Accordingly, when compared to the proposed Action, Reduced Alternative B is only moderately successful at realizing the objectives of the proposed Action and delivering the same benefits. In general, the more expansive Reduced Alternative B would be anticipated to provide more benefit than would Reduced Alternative A. However, although Reduced Alternative B would be expected to provide some of the same benefits expected from the proposed Action within some of the Corridor, it would not do so within the Village segment.
<table>
<thead>
<tr>
<th>Intersections within Given Corridor Segments</th>
<th>LOS</th>
<th>Total Delay (sec)</th>
<th>Avg. Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No Build</td>
<td>Alt B</td>
</tr>
<tr>
<td>EASTERN END</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/McMahon Road</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Victor Egypt/Lynnaugh/Lane: No Signal</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Victor Egypt/Lynnaugh/Lane: Rndabout</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Route 96/Lynnaugh</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>THE VILLAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Church Street</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Route 96/Moore Ave/Maple Ave</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 96/School Street</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Route 96/High Street</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>New Local Street/Maple Ave</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>New Local Street/School Street</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>WESTERN APPROACH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/Route 251: 3 leg</td>
<td>E</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Route 96/Lane Road</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Route 96/Route 251/Lane Road</td>
<td>-</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 96/Omnitech Pl: 3 leg, No Signal</td>
<td>F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Route 96/Omnitech/Willowbrook: Signal</td>
<td>-</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>E</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>MAIN ST. FISHERS/VICTOR MENDON ROAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Local Street/Route 251</td>
<td>-</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Route 251/Rowley/Main Street Fishers</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>F</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>D</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>EASTVIEW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route 96/I-490 WB On-Ramp/Off-Ramp</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 96/Commerce Drive</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 96/High Street</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Route 96/Cobblestone Court</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 96/Turk Hill Road</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 96/Commons Blvd</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Route 96/Route 250</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Route 96/Woodcliff Drive</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Route 96/I-490 Exit 28</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL SOUTH/EASTBOUND</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>SEGMENT ARTERIAL NORTH/WESTBOUND</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 10
This concludes the Draft Generic Environmental Impact Statement for the proposed Action.